
1

Analyzing the Performance Trade-Off in
Implementing User-Level Threads

Shintaro Iwasaki, Student Member, IEEE, Abdelhalim Amer, Member, IEEE,
Kenjiro Taura, Member, IEEE, and Pavan Balaji, Member, IEEE

Abstract—
User-level threads have been widely adopted as a means of achieving lightweight concurrent execution without the costs of OS-

level threads. Nevertheless, the costs of managing user-level threads represent a performance barrier that dictates how fine grained
the concurrency exposed by an application can be without incurring significant overheads; this in turn may translate into insufficient
parallelism to exploit highly parallel systems.

This article is a deep dive into the fundamental costs in implementing user-level threads. We first identify that one of the highest
sources of fork-join overheads stems from deviations, events that incur context switching during the execution of a thread and disrupt
a run-to-completion execution. We then conduct an in-depth investigation of a wide spectrum of methods with respect to how they
handle deviations while covering both parent- and child-first scheduling policies. Our methodology involves a comprehensive instruction-
and cache-level analysis of all methods on several modern CPU architectures. The primary finding of our evaluation is that dynamic
promotion methods that assume the absence of deviation and dynamically provide context-switching support offer the best trade-off
between performance and capability when the likelihood of deviation is low.

Index Terms—Multithreading, Multitasking, Scheduling, User-Level Threads, Context Switch, Task Parallelism

F

1 INTRODUCTION

MULTITHREADING is the predominant form of paral-
lelism to exploit modern highly parallel multicore

and many-core processors. On self-bootable systems, such
as traditional servers and the second generation Intel MIC
accelerators, the majority of programming systems map
their threading abstractions to OS-level threads (e.g., most
systems target the POSIX Threads (Pthreads) specification,
which itself maps Pthreads to OS-level threads). This ap-
proach is known to be too heavyweight to exploit dynamic,
irregular, and massive parallelism because of its expensive
thread management involving OS kernel operations. Hence,
numerous studies have proposed lightweight implementa-
tions of threads that bypass the OS layer and rely mostly
on user-space operations. In this paper, we call these imple-
mentations user-level threads (ULTs).1 Numerous production
and research threading libraries including major produc-
tion OpenMP runtimes (as tasks) [1], [2], [3], Qthreads [4],
Nanos++ [5] (used in OmpSs [6]), Converse [7] (used in
Charm++ [8]), Filaments [9], MassiveThreads [10], and Ar-
gobots [11] have adopted ULTs as an implementation of
abstract parallel units.

Despite ULTs being more lightweight than OS-level
threads, managing ULTs remains a runtime overhead that
should be minimized since it dictates how fine-grained work
executed by threads can be. For instance, if we assume that
an application can tolerate at most 5% threading overheads
and that thread management costs average 1µs, then thread
granularity (in terms of time to execute a unit of work)
must be at least 20µs. For the application to decompose
work into more fine-grained portions (e.g., to express more

1 Literature on a parallel programming model tends to refer to such
a lightweight parallel unit as a “task”, while their underlying imple-
mentations are often discussed as “threads.” This paper focuses on
implementations and thus uses “threads” and “ULTs”.

parallelism), threading overheads must be reduced.2 There
is a lower bound on these overheads that is related to sup-
porting the most basic form of concurrency, which requires
managing thread descriptors and allowing basic scheduling
primitives, such as fork and join operations. Beyond these,
we identified that supporting context switching is the next
most significant source of overheads.

A context switch involves a ULT (current) jumping to
another ULT (target) by restoring an execution context of
the target often after saving the context of the current
ULT. Context switching is necessary in order to support
complex control flows such as yielding threads of execution
(e.g., pthread yield() provided by Pthreads), intermediate
termination (e.g., pthread exit()), efficient synchronization
(e.g., pthread cond wait()), and child-first scheduling [12].
Given the practical importance of context switching, several
threading runtimes made it compulsory and thus pay the
associated performance overheads regardless of the appli-
cation control flow [5], [7], [10]. Others are more mindful
of the context-switching overheads and thus focus on min-
imizing them by giving up the context-switching capability
altogether [1], [2], [3], [9]. A few runtime systems expose
both models as distinct language or runtime abstractions so
that users can choose either of them based on application
requirements [4], [11].

Our first take at this problem showed that it is possible to
dynamically provide the context-switching capability later
when needed [13]. We referred to this type of method as a
dynamic promotion technique. Our prior study was based on
a direct correlation between yielding and context switching;
that is, a context switch triggered by a yield operation re-
quires thread promotion. This observation was biased by the
parent-first scheduling assumption, however, which does

2Example: reducing granularity to 10µs with the same overhead
tolerance of 5% requires lowering threading overheads to 0.5µs

thd_desc_t *create_thd(void (*f)(void *), void *arg);
void join_thd(thd_desc_t *thd);
void yield_thd(void);

(a) Threading operations that appear in this paper. RtC does not support
a yield operation (yield thd()) since it requires a context-switching ca-
pability (Section 2.1). Other operations such as intermediate termination
and synchronization primitives (e.g., a barrier and a mutex) are omitted
since they do not appear in our example codes.

1 void comp(void *arg) { [...]; }
2 // A parallel version of the following loop:
3 // for (int i = 0; i < n; i++) comp(args[i]);
4 void parallel_loop(void **args, int n) {
5 thd_desc_t *thds[n];
6 for (int i = 0; i < n; i++) // fork ULTs.
7 thds[i] = create_thd(comp, args[i]);
8 for (int i = 0; i < n; i++) // join ULTs.
9 join_thd(thds[i]);

10 }

(b) Example code using create thd() and join thd().
Fig. 1. Basic threading API of a user-level threading library we use in this paper and example code with this API.

not apply to child-first scheduling [12]. To capture causes
of thread promotion regardless of the scheduling policy,
this paper borrows the notion of deviation from Spoonhower
et al. [14]. This concept lets us shed light on the fundamental
causes of thread promotion in various patterns of execution
as well as helps us design thread management methods
that reduce the corresponding overheads. We then evalu-
ate the performance characteristics of a large spectrum of
user-level threading methods with representative real-world
codes and link their execution patterns to probabilities of
deviation. Our primary finding is that dynamic promotion
techniques exhibit the best trade-off between performance
and capabilities when the chances of deviation are low.

Specifically, the contributions of our paper are as follows:
• Identifying deviation as the fundamental cause that in-

curs context-switching and thus imposes the associated
fork-join overheads when implementing ULTs;

• In-depth characterization of the performance vs. capa-
bility trade-off with respect to the probability of devi-
ation while covering all feasible methods for building
a generic threading library, including a few methods
missing from prior literature;

• Identifying stack management as an orthogonal dimen-
sion to the problem and demonstrating its applicability
to several threading techniques and its tremendous
effect on performance and memory usage;

• Highly optimized implementations of all methods
within the same threading library (Argobots [11]) for
a fair comparison of all the threading techniques;

• Coverage of major hardware architectures in the high-
performance computing community—Intel Skylake, In-
tel Knights Landing (KNL), ARM 64, and IBM POWER8
processors—to highlight the importance of lightweight
user-level threading techniques for architectures that
employ less powerful cores and have larger thread
contexts;

• Evaluating all the threading methods with N-body, ma-
chine learning, and graph analytics codes, in which de-
viations happen during execution. The results indicate
that dynamic promotion techniques that defer context
management until a deviation happens show the best
performance vs. capability trade-off when deviations
are unlikely.

This manuscript is an extension of the conference paper
previously published by the authors [13]. This paper has
more comprehensive coverage by including new thread-
ing methods (with respect to stack allocation timing and
scheduling policies) and a wider range of modern hardware
architectures. In addition, the notion of deviation captures
causes of context switching outside a yield operation. Our
experiments with the new POWER8 implementation high-
light the efficacy of dynamic promotion techniques on dif-
ferent hardware with the corresponding calling conventions.

Furthermore, our deeper evaluation with a microbenchmark
reveals that the number of created ULTs also affects the
performance trade-off. As a result, this paper depicts a com-
prehensive picture of the performance vs. capability trade-
off between user-level threading techniques regarding stack
allocation strategies, scheduling policies, CPU architectures,
and thread counts, which helps programmers select the best
threading methods that fit their hardware architectures and
application workloads.

Scope of the Paper

We explore neither a granularity control technique that
serializes threads [15], [16] nor a scheduling technique that
improves memory locality and alleviates scheduling over-
heads (e.g., thread pool contention) [17], [18]; our approach
tackles the granularity issue from a different aspect by
minimizing threading overheads, which can coexist with
granularity control strategies and scheduling methods pro-
posed in the previous studies. We do not discuss other
parallel programming paradigms (e.g., an event-driven pro-
gramming model [19]); the focus of our work is a common
multithreaded programming model. The target of this work
is user-level threading techniques to build a generic thread-
ing library without source-to-source translations, compiler
modifications (e.g., Cilk [20]), or kernel modifications (e.g.,
Cilk-M [21]).

2 BASICS OF A USER-LEVEL THREADING LI-
BRARY

Our explanation in this work is based on a threading library
with a simplified API sketched in Fig. 1, which can be
found in most threading libraries. Among functions listed
in Fig. 1a, fork and join are the most basic operations;
a fork function (create thd()) creates a ULT, and a join
function (join thd()) waits for the completion of a given
ULT and frees its resource.3 A thread pool is a data structure
to keep ready ULTs. A ready ULT is popped from a thread
pool and executed by a scheduler that runs with its own
stack on the corresponding OS-level thread (worker). Our
following explanation assumes a work-stealing model [23]
for load balancing; each worker has its own thread pool and
attempts to steal a ready ULT from another worker’s pool if
needed (e.g., when its local pool is empty).4 This fork-join
mechanism is powerful enough to parallelize several paral-
lel patterns including a parallel loop presented in Fig. 1b.

3We do not impose fully strict computation [22] and allow arbitrary
synchronization operations (including a barrier and a mutex) between
threads in order to maintain flexibility and generality.

4 This paper does not assume a specific implementation of thread
pools and work-stealing algorithms.

2

Consider the simplest thread implementation that sup-
ports only fork and join. The essence of fork and join opera-
tions is a schedulable function that can be detached from the
current execution context and later invoked. Compared with
a function call, minimal additional operations to implement
such ULTs are twofold: (1) a thread descriptor that stores
completion status, a function pointer, and its argument and
(2) a scheduling mechanism that keeps thread descriptors
and runs a ready ULT, both of which are fundamental for
detaching and deferring the execution of the function. A
threading method that satisfies only these requirements is
the simplest and most lightweight. This technique, how-
ever, abandons all threading features that require a context
switch; that is, once scheduled, such a ULT does not stop
until completion. Hence we call it a run-to-completion thread
(RtC). We first explain the implementation of RtC and show
why RtC can only run to completion. We then describe how
to overcome the limitation of RtC.

2.1 Run-to-Completion Thread (RtC)

1 void scheduler() {
2 while (true)
3 if (thd_desc_t *thd = pop_pool())
4 thd->f(thd->arg) // schedule thd.
5 }

Fig. 2. Pseudocode of RtC.

Scheduler’s

stack

ULT’s

stack
2. (body)

3. return1. call

(Unused stack space)

• Call ULT function.

• Run ULT body.

• Return to scheduler.

1.
2.
3.

Fig. 3. Flow of fork-join (RtC).

We present the pseudocode of RtC in Fig. 2 and its exe-
cution flow in Fig. 3. RtC requires only a thread descriptor
and a scheduler; on thread creation, RtC allocates a thread
descriptor that holds a function pointer and its argument
and pushes it to a thread pool. A thread in a pool is pulled
by a scheduler running on a worker and simply called on
top of the scheduler. Compared with an immediate function
call natively supported by programming languages, RtC
incurs overheads of thread descriptor management and
scheduling including thread pool operations, both of which
are indispensable costs to detach the execution.

Although RtC has the smallest fork-join overheads, it
lacks threading capabilities that require a context switch
because a simple function call welds together a scheduler
and an invoked thread; a scheduler that spawns an RtC
thread cannot be resumed while the invoked thread is
running. Consider a yield operation (yield thd() in Fig. 1a)
that returns the control from a ULT to a scheduler. In order
to restore the context of the scheduler, values of hardware
registers (including a stack pointer and an instruction ad-
dress) must be reinstated. Nevertheless, RtC saves none of
them explicitly on invocation; thus, although these values
are possibly stored somewhere in the call stack of RtC as
instructed by a compiler, a threading library cannot retrieve
these values. Even if registers could be restored, because
the invoked RtC thread and the scheduler share the same
stack region, any stack growth caused by a function call or

1 void switch_ctx(ctx_t **self_ctx, ctx_t *target_ctx) {
2 Push callee-saved registers // save the current context.
3 Push the parent instruction address
4 *self_ctx = stack_pointer
5 stack_pointer = target_ctx // restore the target context.
6 Pop the target instruction address to regA // regA is caller-saved.
7 Pop callee-saved registers
8 Jump to *regA
9 }

Fig. 4. Pseudo assembly code of user-level context switch.

an invocation of another RtC thread would overwrite the
call stack of the previous RtC thread. This scheduler-thread
welding deprives RtC of threading features that require an
independent invoker’s context; unsupported features are
not only yielding but also intermediate termination, efficient
synchronization, and child-first scheduling. This limitation
critically lowers the practicality of RtC.

2.2 Thread with Full Threading Capabilities
RtC lacks a context-switching capability because it bonds
contexts of a scheduler and a thread together. If their con-
texts are maintained independently, however, a ULT can
return to a scheduler at any point. A fully fledged threading
technique creates and maintains a thread context in order
to support full threading capabilities. Such a thread allows
efficient scheduling, but it suffers from context management
overheads. To understand the difference in performance
and capabilities between these two opposite threading tech-
niques, we first explain user-level context switch, an es-
sential operation to implement fully fledged threads. Our
implementation of user-level context switch follows that
of Boost C++ Libraries [24]; similar codes are found in
major threading packages, for example, in Qthreads [4],
Nanos++ [5], Converse [7], and MassiveThreads [10] as well
as Argobots [11]. We note that most ULT implementations
do not maintain signal masks and compiler-level thread-
local storage for every ULT, so they are shared among ULTs
running on the same worker. Figure 4 presents the pseu-
docode of user-level context switch. This implementation
represents a context as a single pointer to the call stack
(ctx t* in the figure) since all the other data are saved
at the top of the stack. Since a caller of switch ctx() is
responsible for saving and restoring caller-saved registers
before and after calling switch ctx(), switch ctx() itself
needs to manage only callee-saved registers (lines 2 and
7).5 This routine first saves all the callee-saved registers
including an instruction address on top of the stack (lines
2 and 3) and stores the current stack pointer in self ctx
(line 4). Then, switch ctx() updates the stack pointer to the
stack address pointed to by target ctx (line 5) and restores
the instruction address and the callee-saved register values
from the stack of the target in reverse order (lines 6 and 7).
The target, which is suspended in switch ctx(), is resumed
by jumping to the target instruction address (line 8). We note
that all of these operations are executed in the user space.

If a scheduler’s context has been saved properly,
switch ctx() enables a ULT to save its context and resume
a scheduler whenever it needs to return to a scheduler.
This method, however, is inappropriate for initiating a ULT
because switch ctx() takes target ctx that must have been

5Threading libraries must save and restore all callee-saved registers
specified by application binary interfaces (ABIs) because, without a
special compiler help, libraries are unable to obtain information about
which callee-saved registers are read after calling switch ctx().

3

1 void start_ctx(ctx_t **self_ctx, void *stack, void (*f)(void *),
2 void *arg) {
3 Push callee-saved registers // save the current context.
4 Push the parent instruction address
5 *self_ctx = stack_pointer
6 stack_pointer = stack // start f on top of stack.
7 f(arg)
8 }
9 void end_ctx(ctx_t *target_ctx) {

10 stack_pointer = target_ctx // restore the target context.
11 Pop the target instruction address to regA // regA is caller-saved.
12 Pop callee-saved registers
13 Jump to *regA
14 }

Fig. 5. Pseudo assembly code to start and finish thread contexts.

already initialized. This routine always saves the context
of the current ULT, but this action is unnecessary when a
ULT finishes because that ULT will never be resumed again.
To efficiently handle these cases, we split the functional-
ity of switch ctx() and create two methods, start ctx()
and end ctx(), to start and finish contexts, respectively.
Figure 5 shows the pseudocodes of these functions. Their
implementations come from the first and the latter parts of
switch ctx(). start ctx() saves the context of the current
thread (lines 3–5) but freshly executes a function f() on
top of stack (lines 6 and 7), while end ctx() restores and
resumes the target context (lines 10–12) without saving the
current context.

Fully fledged threads that support the full threading ca-
pabilities are implemented with the three context-switching
functions described above. In reality, we can find two im-
plementations of fully fledged threads that have been de-
veloped to support different scheduling policies; one is for
parent-first scheduling, and the other is for child-first schedul-
ing.6 We first explain parent-first fully fledged threads and
then child-first threads.

2.2.1 Parent-First Fully Fledged Thread (Full)

1 thread_local ctx_t *g_sched_ctx // worker-local variable.
2 void scheduler() {
3 while (true)
4 if (thd_desc_t *thd = pop_pool()) {
5 if (!thd->is_started) {
6 thd->is_started = true
7 start_ctx(&g_sched_ctx, thd->stack, thd_wrapper, thd)
8 } else
9 switch_ctx(&g_sched_ctx, thd->ctx)

10 if (!thd->is_finished)
11 enqueue_pool(thd) // return thd to pool.
12 }
13 }
14 void thd_wrapper(thd_desc_t *thd) {
15 thd->f(thd->arg) // thd->f and thd->arg are given by users.
16 thd->is_finished = true
17 end_ctx(g_sched_ctx)
18 }

Fig. 6. Pseudocode of Full.

A parent-first scheduling policy is the same as the
scheduling order of RtC; on create thd(), a parent (i.e., a
caller) pushes a child thread to a thread pool and resumes
the execution of the parent itself, and later a scheduler
executes the child stored in the thread pool. For example,
in Fig. 1b, a parent thread that runs parallel loop() first
creates all child threads and pushes them to a thread pool
in the loop (lines 6–7). On join thd() (line 9), the parent
thread checks the completion of each child thread. If the
child thread is not completed (e.g., by this worker or other
workers), the parent cannot make progress and thus context-
switches to a scheduler and runs a ready ULT.

6Parent-first scheduling is sometimes called help-first scheduling
while child-first is called work-first.

1 thread_local thd_desc_t *g_current_thread // worker-local variable.
2 thd_desc_t *create_thd(...) {
3 thd_desc_t *thd = allocate_thd_desc_t()
4 init_thd_desc(thd, ...)
5 thd->parent = g_current_thread
6 start_ctx(&g_current_thread, thd->stack, thd_wrapper, thd)
7 return thd
8 }
9 void thd_wrapper(thd_desc_t *thd) {

10 push_local_pool(thd->parent)
11 thd->f(thd->arg) // thd->f and thd->arg are given by users.
12 thd->is_finished = true
13 ctx_t *next_ctx = pop_local_pool_or_get_sched_ctx()
14 end_ctx(next_ctx) // child-first scheduling expects next == parent.
15 }

Fig. 7. Pseudocode of C-Full.

In this paper, we refer to the implementation of a fully
fledged threading technique with parent-first scheduling as
Full. Figure 6 shows the pseudocode of Full. The scheduler
first pops a ULT (thd) from a pool (line 4) and starts it by
start ctx() (line 7) if thd has not been executed previously;
otherwise it resumes thd by switch ctx() (line 9) since its
context has already been initialized. A user-given thread
function is called in a wrapper function thd wrapper()
(line 15) so that end ctx() is executed on completion (line
17) because a ULT invoked by start ctx() cannot return to
the parent scheduler just by a standard return procedure.

Since both start ctx() and switch ctx() save the
scheduler’s context in g sched ctx, the scheduler can be
resumed by switch ctx() or end ctx() at any time, thus
allowing yielding, intermediate termination, and efficient
synchronization. Child-first scheduling also requires user-
level context switch, as we describe in the next section.

2.2.2 Child-First Fully Fledged Thread (C-Full)
Child-first scheduling [12] is a different scheduling policy
from that of RtC and Full; under the child-first scheduling
policy, on thread creation, a parent thread yields to a child
thread, and the child pushes the parent into a thread pool
so that another scheduler can steal the continuation of the
parent ULT. After the child completes, it preferably jumps
back to the parent thread if the parent is still in the thread
pool. For instance, in Fig. 1b, a caller of parallel loop()
(i.e., a parent) pushes its continuation to a thread pool
and executes a child thread first on create thd() (line 7).
Parallelization is achieved by exposing a continuation of a
parent thread to other workers. If no work stealing happens,
the child returns to the parent context on completion and
the parent creates a next child thread in the loop (lines 6–7).
Since this child-first scheduling naturally executes threads
in sequential order (or depth-first order) if no work steal-
ing happens, it is often adopted to parallelize divide-and-
conquer recursive algorithms for better locality [20], [22].
Such a child-first fully fledged thread, which we call C-Full
in this paper, can also be implemented with the context-
switching functions shown in Fig. 4 and Fig. 5.

The pseudocode of C-Full is presented in Fig. 7. C-Full
performs a context switch in a thread creation function
(create thd()); after allocating and initializing a thread
descriptor, a parent thread saves its context and jumps to
a child thread by start ctx() (line 6). The child pushes the
parent to a local thread pool (line 10) before running a user-
given thread function (line 11) to expose concurrency. On
completion, the child thread checks the next thread in the
pool, which is ideally the parent thread so that execution
order is depth-first. However, the child does not always
succeed in taking the parent because it might have been

4

either stolen by another scheduler or resumed by threading
operations (e.g., yield thd()). If this is the case, the child
thread jumps to another thread if it exists; otherwise, the
child thread returns to the scheduler (scheduler() in Fig. 6).
We note that C-Full has also the full threading capabilities
since all parent and child threads and schedulers maintain
their contexts independently.

2.3 Performance Comparison

• Save register values.

• Change stack pointer to ULT’s stack.

• Jump to ULT.

• Call ULT function.

• Run ULT body.

• Restore stack pointer.

• Restore register values.

• Jump to scheduler.

1.

2.

3.

3. context switch
Scheduler’s

stack

(Unused stack space)

ULT’s

stack

(Unused stack space)

2. (body)

1. context switch

(a) Flow of Full.

• Save register values.

• Change stack pointer to child’s stack.

• Jump to parent.

• Push parent to pool.

• Call ULT function.

• Run ULT body.

• Pop ULT (=parent) from pool.

• Restore stack pointer.

• Restore register values.

• Jump to scheduler.

1.

2.

3.

3. context switch
Parent’s

stack

(Unused stack space)

Child’s

stack

(Unused stack space)

2. (body)

1. context switch

(b) Flow of C-Full.
Fig. 8. Flow of fork-join when no deviation happens.

In both the parent- and child-first cases, the manage-
ment of call stacks and callee-saved registers plays a key
role in supporting full threading capabilities and child-first
scheduling. In real applications, however, the ULT is often
executed as if it were just called by following a normal
function-call procedure; Full threads can finish without any
context switch during execution, and C-Full threads can just
run to completion and return to the parent thread.

To analyze the performance difference, we use a notion
of deviation appearing in [14]7. A deviation in the work by
Spoonhower et al. [14] is defined as an event that prevents a
ULT from sequential execution (i.e., execution order where
all thread creations are inlined). Since sequential execution
is often most efficient in terms of memory locality [14],
[25], the number of deviations has been used as a metric
that represents how far the resulting parallel execution
differs from sequential execution. This idea works well
for child-first scheduling; the number of deviations can be
zero if neither work stealing nor yielding happens. If we
follow the original definition, however, all fork and join
operations of parent-first threads incur deviations because,
unlike child-first order, parent-first order is different from
sequential execution order even when a parent-first ULT
is executed in a run-to-completion manner. This paper,
therefore, generalizes the notion of deviation by defining
it as an event causing an execution that is different from
sequential execution except such an event on forking and
joining parent-first threads. With this definition, the number
of deviations under parent-first scheduling can be zero in a
case where no context switch happens during the execution
of a thread. Deviation includes any threading operations

7We note that this is called differently in other literature; for
example, such an event is called “drifted” in [25].

1 void kernel(void *yield_flag) {
2 if (yield_flag != NULL)
3 yield();
4 }
5 void microbenchmark(int n) {
6 void *yield_flags[N];
7 thd_desc_t *thds[N];
8 // n yield_flags are set to non-NULL, while 0 <= n <= N.
9 set_yield_flags(yield_flags, n);

10 for (int i = 0; i < N; i++) // fork ULTs.
11 thds[i] = create_thd(kernel, yield_flags[i]);
12 for (int i = 0; i < N; i++) // join and free ULTs.
13 join_thd(thds[i]);
14 }

Fig. 9. Microbenchmark that forks and joins N ULTs while random n out
of N ULTs encounter deviations invoked by yield thd().

0% 25% 50% 75% 100%
Deviation probability (D)

 0

100

200

300

400

C
yc

le
s

Full
RtC

C-Full

Fig. 10. Fork-join overheads on an Intel Skylake machine using a mi-
crobenchmark presented in Fig. 9 (N = 4,096). RtC shows the perfor-
mance at D = 0% because RtC does not allow any deviation.

requiring context switch during execution (e.g., a yield
operation, intermediate termination, and synchronization)
and, in the child-first case, an event where a parent thread
is stolen by another scheduler. We note that no deviation is
allowed with RtC.

Figure 8 illustrates the execution paths of Full and C-Full
without deviation. Comparison of Fig. 8 with Fig. 3 shows
that both Full and C-Full incur the following additional
overheads compared with RtC, lowering the performance
of Full and C-Full even when no deviation happens.

1. Save callee-saved registers on ULT invocation
(start ctx()).

2. Restore callee-saved registers on ULT completion
(end ctx()).

3. Manage call stacks for thd->stack.
To quantify the performance difference, we created a

microbenchmark that controls the chances of deviation by
adding a yield operation. Specifically, we ran a microbench-
mark that creates and joins N empty ULTs as shown in
Fig. 9. In this benchmark, n randomly chosen ULTs yield
once, so n/N% of ULTs encounter deviations. We define a
deviation possibility D as n/N and changed D by control-
ling n while fixing N to 4,096. We ran this microbenchmark
on a single core of an Intel Skylake processor (see Section 4
for details).

Figure 10 shows the fork-join overheads regarding the
deviation probability (D). Our result is the arithmetic mean
of all iterations. Because RtC does not allow deviation, we
draw a horizontal line which has the value at D = 0% (i.e.,
no deviation). The result shows that even when no deviation
takes place, the overhead of Full is 1.7x higher than that
of RtC because of the context management. We note that
although their scheduling policies are different, Full and
C-Full perform similarly because the expensive operations
including register and stack management are common.

Ideally, Full would perform as well as RtC when no
deviation occurs, and so would C-Full. However, it has been
an open question whether this performance gap is inevitable

5

when employing full threading capabilities or whether other
threading techniques offer different performance and ca-
pability trade-offs. In the next section we analyze the per-
formance discrepancy and investigate threading techniques
that exist between these two opposite directions, that are
more efficient than Full and C-Full when no deviation
happens, and that keep full threading capabilities.

3 LIGHTWEIGHT USER-LEVEL THREADING TECH-
NIQUES WITH DYNAMIC PROMOTION

In this section we analyze the performance gap between
fully fledged techniques (Full and C-Full) and RtC and
explore intermediate threading techniques. The analysis
uses the same microbenchmark presented in the preceding
section (Fig. 9) and progressively cuts down the overheads
of Full and C-Full at D = 0%. Each step of the analysis
finds a lightweight threading technique that has a different
trade-off between performance with and without deviation
and programming constraints.

3.1 Parent-First Scheduling
We first look at parent-first threading techniques. Our anal-
ysis reduces the overhead of Full toward that of RtC while
keeping the capabilities of Full. Instruction breakdowns
and performance data of all the parent-first methods are
summarized in Fig. 16 and Fig. 17, respectively.

3.1.1 Removing Context Switch on Completion (RoC)

1 void start_ctx_RoC(ctx_t **self_ctx, void *stack, void (*f)(void *),
2 void *arg) {
3 Push callee-saved registers
4 Push an instruction address
5 *self_ctx = stack_pointer
6 stack_pointer = stack
7 f(arg) // a user function is directly called.
8 return
9 }

10 void end_ctx_to_sched(void) {
11 end_ctx(g_sched_ctx)
12 }

Fig. 11. Pseudo assembly code of context switch in RoC.

• Save register values.

• Change stack pointer to ULT’s stack.

• Jump to ULT.

• Call ULT function.

• Run ULT body.

• Return to scheduler.

1.

2.
3.

3. return
Scheduler’s

stack

(Unused stack space)

ULT’s

stack

(Unused stack space)

2. (body)

1. context switch

Fig. 12. Flow of RoC when no deviation happens. The difference from
Full (Fig. 8a) is written in italic.

Our instruction analysis shows a large difference in
instruction counts between Full and RtC at D = 0%; even
if no deviation occurs, Full performs context switch twice,
imposing as many as 50 instructions. The first context switch
from a scheduler to a ULT is necessary in order to make a
scheduler resumable at any point. If no deviation occurs,
however, the second manipulation of callee-saved registers
is unnecessary since the register values of the scheduler
are restored by a user-given thread function (thd->f()). A
return-on-completion technique (RoC) exploits the fact that
the first context switch is inevitable but the last one can be
omitted if no deviation takes place during execution; RoC

replaces the second context switch by a standard return pro-
cedure to reduce the context-switching cost on completion.

Figure 11 presents the pseudocode of a function that in-
vokes RoC, and Fig. 12 illustrates its execution flow without
deviation. start ctx RoC() first saves callee-saved registers
(lines 3 and 4), changes a stack (lines 5 and 6) as start ctx()
does (Fig. 5), and directly calls a thread function f() (line 7).
If a created thread has not encountered a deviation, the
parent scheduler has never been resumed, so the RoC thread
can simply return to a scheduler without restoring callee-
saved registers saved at lines 3 and 4 because they were re-
stored by f(). Thus, start ctx RoC() can return to a sched-
uler by a return instruction.8 However, the scheduler cannot
simply be resumed by a return procedure if deviations
have happened because a deviation staled the callee-saved
registers saved in f(). In order to address this issue without
extra overheads, the return address stored in the call stack of
start ctx RoC() is updated to end ctx to sched() when
a first deviation happens; if the RoC thread has confronted
a deviation, start ctx RoC() does not directly return to the
scheduler but jumps to end ctx to sched() by return so
that the context of the scheduler can be properly restored
by end ctx() (line 11). We note that only the first deviation
needs to modify the return address, so succeeding deviation
events do not incur any overhead.

When D is 0%, RoC omits one context switch per
fork-join and successfully saves 24 instructions compared
with Full, achieving 16% less overheads than does Full.
However, RoC degrades performance when D is large (4%
worse at D = 100%) because when a deviation happens,
RoC performs the same number of context switches but
complicates the control flow.

3.1.2 Removing Context Switch on Invocation (SS)

1 void start_ctx_SS(ctx_t **self_ctx, void *stack, void (*f)(void *),
2 void *arg) {
3 *self_ctx = stack_pointer
4 stack_pointer = stack
5 f(arg) // a user function is directly called.
6 return
7 }
8 void end_ctx_invoke_sched(void) {
9 stack_pointer = scheduler's stack_top

10 scheduler()
11 }

Fig. 13. Pseudo assembly code of context switch in SS.

Although RoC successfully skips register manipulations
on completion at D = 0%, saving a context on invocation
makes RoC slower than RtC. We save the scheduler’s con-
text in order to resume it later, but if the scheduler does not
need to preserve its state including local variables and its
progress, we can freshly start a new one. We call this prop-
erty of a scheduler statelessness. We propose a new threading
technique stack separation (SS) that separates stacks but does
not save a context of the scheduler on invocation, while this
technique requires a stateless scheduler.

8We assume a return mechanism similar to that of the x86/64
ABI [26]; a return instruction pops an instruction address from the call
stack and jumps to that address. Unlike the x86/64 instruction set [27],
however, several architectures including ARM [28] and POWER [29]
do not have such a multifunctional return instruction. Nevertheless,
their ABIs [30], [31] adopt similar calling conventions, which save an
instruction address at a predefined location at a stack frame boundary.
Thus we can implement the same algorithm on these architectures by
combining multiple instructions as most compiler-generated codes do
in a function epilogue.

6

• Change stack pointer to ULT’s stack.

• Jump to ULT.

• Call ULT function.

• Run ULT body.

• Return to scheduler.

1.

2.
3.

3. return
Scheduler’s

stack

ULT’s

stack

(Unused stack space)

2. (body)

1. change

stack & call

Fig. 14. Flow of SS when no deviation happens. The difference from
RoC (Fig. 12) is written in italic.

Figure 13 shows the pseudocode of SS. After changing
a stack pointer (lines 3 and 4), SS directly calls a thread
function (line 5). As illustrated in Fig. 14, if no deviation
happens, it returns to the scheduler with a standard return
(line 6) as RoC does. If a deviation occurs, the return address
in the call stack of the SS thread is updated so that SS
jumps to a function without restoring the outdated sched-
uler’s context. However, SS cannot resume the scheduler
by end ctx to sched() in Fig. 11 because SS does not
save the scheduler’s callee-saved registers. Instead, SS calls
scheduler() on the stack of the original scheduler, which
flushes all the local variables in the call stack and the
progress stored in an instruction address.

SS further reduces 14 instructions compared with RoC
when D is 0%, achieving 14% higher performance than
RoC does. However, SS lowers performance if a deviation
happens (7% slower than Full at D = 100%) because SS
essentially needs to rerun a scheduler from the beginning of
the function, which is unnecessary if the scheduler context
is properly saved.

Although SS performs better than Full and RoC at
D = 0%, SS imposes a programming constraint that re-
quires a stateless scheduler, narrowing the applicability of
SS. A random work-stealing scheduler [23] can be imple-
mented as stateless, but we note that not all schedulers are
trivially stateless; for example, a scheduler is not stateless if
it saves counters in local variables to select a victim of work
stealing or if it sleeps when work stealing fails continuously.

3.1.3 Lazy Stack Allocation (Full-L, RoC-L, and SS-L)
SS remains slower than RtC. We observe that RtC incurs
fewer L1 and L2 cache misses than do the other techniques
at D = 0% because RtC accesses only the scheduler’s stack
while each invocation of Full, RoC, and SS touches an
independent call stack that is preallocated on creation. Such
an eager stack allocation strategy is common in practice to
facilitate management of a thread descriptor and a stack;
it allows a runtime to reduce memory management oper-
ations by allocating together thread descriptors and their
corresponding stacks (i.e., use part of a stack region as a
descriptor). Nevertheless, this practice increases the mem-
ory accesses since each ULT invocation accesses a different
stack area that is unlikely in caches. As a result, Full, RoC,
and SS increase L1 and L2 cache misses at D = 0%.

However, not all the ready ULTs need to have inde-
pendent stacks; only simultaneously active ULTs require
independent stacks. To reduce the memory footprint, we
introduce a lazy stack allocation method (LSA) that decou-
ples the management of thread descriptors and stacks and
assigns a stack at invocation time. Since most ULTs are
forked and joined sequentially when D is small, a call stack
can be reused across thread invocation. Full, RoC, and SS

can adopt LSA without changing their context-switching
algorithms. We refer to these techniques by adding a suffix
-L to their names.

We observe that Full-L, RoC-L, and SS-L achieve slightly
higher performance than do the original techniques by suc-
cessfully reducing L1 and L2 cache misses at D = 0%; their
numbers of L1 and L2 cache misses are almost the same as
those of RtC. However, LSA adds 11 instructions to manage
a stack and a thread descriptor independently, so LSA pos-
sibly degrades performance on different machines that have
different instruction, memory, and cache costs. The results
also show that the advantage of LSA becomes negligible as
D gets higher since more ULTs need independent stacks;
as a result, the additional allocation operations incurred by
LSA lower the performance. We note that LSA promotes
stack reuse and thus can reduce the memory footprint when
D is small, which is evaluated in Section 4.1.4.

3.1.4 Removing Stack Change (SC)

• Call ULT function.

• Run ULT body.

• Return to scheduler.

• Check if ULT had deviation.

1.
2.

3.

Scheduler’s

stack

ULT’s

stack
2. (body)

3. return

& check
1. call

(Unused stack space)

Fig. 15. Flow of SC. The difference from SS (Fig. 14) is written in italic.

Threading overheads still exist in the stack management,
which fundamentally makes SS-L slower than RtC. If a
scheduler is stateless, however, a scheduler can be spawned
on top of the newly allocated stack, which eliminates man-
agement of both callee-saved registers and stacks. The tech-
nique that newly creates a scheduler has been adopted by
some runtimes [32], [33], [34]. We refer to this technique
as scheduler creation (SC). When an SC thread encounters a
deviation for the first time, it spawns a ULT with a new
stack and starts a scheduler on top of it. At the same time,
the original scheduler currently running the SC thread is
invalidated by updating a flag in order to keep the number
of active schedulers. On completion, a scheduler checks
the invalidation flag; if invalidated, it jumps to an active
scheduler using g sched ctx.

In addition to the requirement of a stateless scheduler
as SS and SS-L have, SC imposes a new constraint on the
stack size; because stacks are shared with SC threads and
schedulers, the stack size of all SC threads must be the same
as that of the scheduler, forcing users to adopt the largest
stack size that fits all threads in a program. This constraint
is significant when one application contains multiple types
of threads each of which requires a different stack size.

Figure 16 summarizes the instruction breakdowns with
and without deviation and Fig. 17 shows the performance
and cache misses of eight parent-first threading techniques.
Fig. 16a shows that at D = 0% SC adds only three in-
structions to check the invalidation flag. As a result, the
overhead of SC is as small as that of RtC at D = 0%
while SC supports all the threading capabilities that may
cause deviations. However, restarting a scheduler on a new
stack is expensive in terms of the number of instructions and
memory accesses; hence, SC shows the worst performance
among the seven methods at D = 100%.

7

Fu
ll
Fu

ll-L
RoC

-L
SS

-L
RoC SS SC RtC

0

50

100

150

200

250
#

 o
f i

ns
tr

uc
tio

ns
199

210

185
171175

161152149

SS (flag check)
SC (ctx switch)
RoC (ctx switch)
LSA
Full (ctx switch)
Common

(a) D = 0%

Fu
ll
Fu

ll-L
RoC

-L
SS

-L
RoC SS SC

0

100

200

300

400

500

#
 o

f i
ns

tr
uc

tio
ns 331

365
411

458

377
426 445

Scheduler rerun
SS (flag check)
SC (ctx switch)
RoC (ctx switch)
LSA
Full (ctx switch)
Dynamic promotion
Common

(b) D = 100%
Fig. 16. Instruction breakdown of fork and join operations on Skylake
(parent-first methods).

0% 25% 50% 75% 100%
Deviation probability (D)

 0

200

400

600

C
yc

le
s

Full
Full-L
RoC
RoC-L

SS
SS-L
SC
RtC

(a) Fork-join overheads

0% 25% 50% 75% 100%
Deviation probability (D)

 0

 10

 20

 30

#
 o

f L
1

ca
ch

e
m

iss
es Full

Full-L
RoC
RoC-L

SS
SS-L
SC
RtC

(b) Number of L1 cache misses obtained by PAPI [35]

0% 25% 50% 75% 100%
Deviation probability (D)

 0

 5

 10

 15

 20

#
 o

f L
2

ca
ch

e
m

iss
es Full

Full-L
RoC
RoC-L

SS
SS-L
SC
RtC

(c) Number of L2 cache misses obtained by PAPI [35]
Fig. 17. Performance of the parent-first threading methods on Skylake.
Almost no L3 cache miss happens in this experiment because each ULT
accesses a small portion of a call stack; we therefore omit the data.

3.2 Child-First Scheduling

In this section, we apply the same analysis methodology to
child-first techniques. We use the same microbenchmark to
evaluate their overheads. Their instruction breakdowns and
performance are summarized in Fig. 20 and Fig. 21.

3.2.1 Eager Stack Release (C-Full-E)
C-Full suffers from large L1 and L2 cache misses because
each ULT has an independent stack. LSA, which allocates
stack on invocation, seems promising to reduce cache misses
incurred by stack accesses. However, LSA itself is not ap-

plicable to child-first techniques because creation and invo-
cation are done in the same function (i.e., create thd()).
To promote stack reuse, we devise an eager stack release
method (ESR) that frees stacks not when threads are joined
(i.e., join thread()) but on completion of ULTs. ESR allows
consecutively spawned ULTs to reuse the same stack region
if no deviation happens; however, ESR needs to decouple
the management of thread descriptors and stacks, adding
extra overheads to handle them separately. We call this
technique C-Full-E.

Although ESR imposes 11 instructions for independent
management of thread descriptors and stacks, C-Full-E suc-
cessfully eliminates L2 cache misses and reduces L1 cache
misses, achieving an overall performance improvement of
13% when no deviation takes place. In addition, as will be
evaluated in Section 4.1.4, this stack reuse can dramatically
reduce the memory footprint when the deviation probability
is low. However, ESR fails to effectively reuse stacks and
degrades performance by additional stack and thread de-
scriptor management as the deviation probability increases.

3.2.2 Removing Context Switch on Completion (C-RoC
and C-RoC-E)

1 thd_desc_t *create_thd(...) {
2 thd_desc_t *thd = allocate_thd_desc_t()
3 init_thd_desc(thd, ...)
4 thd->parent = g_current_thread
5 start_ctx_RoC(&g_current_thread, thd->stack, thd_wrapper, thd)
6 if (stolen_by_another_worker)
7 *(thd->stack + RETURN_ADDRESS_OFFSET) = end_ctx_to_sched
8 return thd
9 }

10 void thd_wrapper(thd_desc_t *thd) {
11 push_local_pool(thd->parent)
12 thd->f(thd->arg) // thd->f and thd->arg are given by users.
13 thd->is_finished = true
14 ctx_t *next_ctx = pop_local_pool_or_get_sched_ctx()
15 if (next_ctx == thd->parent->ctx)
16 return
17 else
18 end_ctx(next_ctx)
19 }

Fig. 18. Pseudo assembly code of context switch in C-RoC.

• Save register values.

• Change stack pointer to child’s stack.

• Jump to parent.

• Push parent to pool.

• Call ULT function.

• Run ULT body.

• Pop ULT (=parent) from pool

• Return to scheduler.

1.

2.

3.

3. return
Parent’s

stack

(Unused stack space)

Child’s

stack

(Unused stack space)

2. (body)

1. context switch

Fig. 19. Flow of C-RoC when no deviation occurs. We emphasize the
difference from C-Full (Fig. 8b) by italicizing it.

As Full-L does, C-Full-E manipulates callee-saved regis-
ters on both invocation and completion. Unlike parent-first
scheduling, child-first scheduling must preserve the context
of the parent ULT since it is controlled by the users. Hence,
child-first scheduling needs to maintain an independent
stack and manage callee-saved registers on invocation. If
no deviation happens, however, the parent thread can be
resumed by a return function using a return-on-completion
technique. This technique is applicable to both C-Full and
C-Full-E; we call them C-RoC and C-RoC-E, respectively.
Child-first return-on-completion techniques, however, need
to deal with a deviation caused by work stealing to the

8

C-Fu
ll

C-Fu
ll-E

C-R
oC

C-R
oC

-E
0

50

100

150

200

250
#

 o
f I

ns
tr

uc
tio

ns 198 209
193 205

RoC (ctx switch)
Full (ctx switch)
ESR
Common

(a) D = 0%

C-Fu
ll

C-Fu
ll-E

C-R
oC

C-R
oC

-E
0

100

200

300

400

#
 o

f i
ns

tr
uc

tio
ns 335

369 352
381

RoC (ctx switch)
Full (ctx switch)
ESR
Dynamic promotion
Common

(b) D = 100%
Fig. 20. Instruction breakdown of fork and join operations on Skylake
(child-first methods).

parent thread.9 Therefore, C-RoC and C-RoC-E need an
algorithm that allows a thief to update the return address
in the call stack of the child ULT.

0% 25% 50% 75% 100%
Deviation probability (D)

 0

100

200

300

400

500

C
yc

le
s

C-Full
C-Full-E

C-RoC
C-RoC-E

(a) Fork-join overheads

0% 25% 50% 75% 100%
Deviation probability (D)

 0

 5

 10

 15

 20

#
 o

f L
1

ca
ch

e
m

iss
es C-Full

C-Full-E
C-RoC
C-RoC-E

(b) Number of L1 cache misses obtained by PAPI [35]

0% 25% 50% 75% 100%
Deviation probability (D)

 0

 5

 10

 15

#
 o

f L
2

ca
ch

e
m

iss
es C-Full

C-Full-E
C-RoC
C-RoC-E

(c) Number of L2 cache misses obtained by PAPI [35]
Fig. 21. Performance of the child-first methods on Skylake. Higher levels
of caches do not suffer from cache misses in this experiment because
each ULT accesses a small portion of a call stack; we therefore omit the
data.

We first look at the algorithm of C-RoC. The pseudocode
of C-RoC is shown in Fig. 18. The first context switch
uses start ctx RoC() presented in Fig. 11; if no deviation
happens, the child ULT can return to the parent (line 16). As
RoC does, the first occurrence of any threading operation
that causes a deviation updates the return address stored
in the stack. In the case of C-RoC, however, deviations can

9It does not happen with parent-first scheduling since a scheduler,
which corresponding to a parent in child-first scheduling, is never
stolen by another worker.

be caused by work stealing; even if no context-switching
operation is performed by the child ULT, the child may
not simply return to the parent ULT if the parent has been
stolen. To handle this case, the thief updates the return
address of the child (lines 6 and 7), which does not exist
in RoC. We note that there is no data race between an
update by a thief (line 7) and reading a return address
by a child (line 16) because the child ULT performs return
only after taking the parent ULT (line 14). As illustrated by
Fig. 19, C-RoC successfully removes callee-saved register
management on completion when no deviation takes place.

In addition to changing the stack management, C-RoC-
E requires a small modification to C-RoC because at line 7
in Fig. 18 a parent may update a child stack that has been
already freed under the ESR policy. A thread descriptor of a
child is, however, always available in create thd() since the
descriptor has not yet been returned to the caller of create -
thd(). C-RoC-E, therefore, does not access a return address
in the call stack but reads a member variable in a thread
descriptor. This change makes an update by a thief safe but
imposes additional overheads for reference in comparison
with directly manipulating values in a call stack at D = 0%.

The instruction breakdowns and performance of the four
child-first threading methods are summarized in Fig. 20 and
Fig. 21. Figure 20 shows that at D = 0% C-RoC and C-RoC-
E in total reduce 5 and 4 instructions compared with C-
Full and C-Full-E, respectively. However, C-RoC increases
the memory footprint because the complicated operations
in thd wrapper() require larger stack space, which increases
L1 and L2 cache misses. Overall, C-RoC is 10% slower than
C-Full even if no deviation happens. C-RoC-E overcomes
this issue of memory footprint by reusing stacks, which
successfully trims down the overhead by 29% compared
with C-Full at D = 0% while worsening performance by
7% at D = 100%.

3.3 Summary
Table 1 shows the trade-off regarding performance and pro-
grammability. Full, Full-L, RoC, RoC-L, and all the child-
first threading techniques have no programming constraints
because they save a parent context, while SS, SS-L, and SC
require stateless schedulers. SC has an additional constraint
on stack size, which further narrows its applicability. RtC
supports no threading capability that requires a context
switch such as yielding, intermediate termination, and effi-
cient synchronization. However, highly constrained thread-
ing techniques perform better if no deviation happens; in
the case of parent-first scheduling, RtC and SC perform
better than the others. We also note that in both parent-
and child-first cases, threading techniques that show better
performance at low D tend to perform worse at large D
because if deviation happens, dynamic promotion methods
that lazily manage the stack and callee-saved registers incur
extra overheads than do eager methods. We note that these
techniques can co-exist in a single threading library without
impacting other techniques. We will discuss how to choose
the best technique in Section 4.5.

3.4 Coverage of Our Techniques
Table 2 summarizes the coverage of our analysis. An area
labeled with (*) in the table denotes an absence of practical

9

TABLE 1
Summary of the twelve threading techniques

D = 0% D = 100% Constraints
LSA/ESR Change

stack?
of Register

Managements Overheads Overheads

Pa
re

nt
-F

ir
st

Full (Fully Fledged Thread) No Yes 2 Highest Lowest No
Full-L (Fully Fledged Thread (LSA)) Yes Yes 2 No
RoC (Return on Completion) No Yes 1 No
RoC-L (Return on Completion (LSA)) Yes Yes 1 No
SS (Stack Separation) No Yes 0 Scheduler must be stateless.
SS-L (Stack Separation (LSA)) Yes Yes 0 Scheduler must be stateless.

SC (Scheduler Creation) Yes No 0 Highest Scheduler must be stateless.
Stack size is shared.

RtC (Run to Completion) - No 0 Lowest - No deviation is allowed.

C
hi

ld
-

Fi
rs

t

C-Full (Fully Fledged Thread) No Yes 2 Highest Lowest No
C-Full-E (Fully Fledged Thread (ESR)) Yes Yes 2 No
C-RoC (Return on Completion) No Yes 1 No
C-RoC-E (Return on Completion (ESR)) Yes Yes 1 Lowest Highest No

TABLE 2
Coverage of our analysis

Change
Stack?

of Register
Managements LSA/ESR Parent-First Child-First

Yes

2 No Full C-Full
Yes Full-L C-Full-E

1 No RoC C-RoC
Yes RoC-L C-RoC-E

0 No SS

(*2)

Yes SS-L

No

2 No

(*1)Yes

1 No
Yes

0 No (*3)
Yes SC/RtC

techniques. In the following, we explain reasons why these
techniques are infeasible for general threading libraries.

Saving Registers (*1): Our analysis does not include
threading techniques that do not change a stack but ex-
plicitly maintain callee-saved registers on invocation. Intu-
itively, if a stack is shared between a parent and a scheduler,
resuming a scheduler is prohibitive since a scheduler can
potentially overwrite the invoked stack. On the other hand,
if we totally rerun a new scheduler as SC does, storing
callee-saved registers is pointless. In the past, however,
such techniques have been proposed for child-first schedul-
ing [36], [37], [38], [39]. We note that these techniques are not
suitable for building threading libraries because compiler
modifications are required. We discuss their techniques in
Section 5.

Restarting Parent ULTs (*2): With parent-first schedul-
ing, SS, SS-L, and SC restart a stateless scheduler on devi-
ation. This technique is not applicable to child-first threads,
however, since parent ULTs are in most cases not stateless;
rerunning a parent ULT loses not only the result computed
by the parent ULT but also a child thread descriptor if the
parent is in the midst of the thread creation function. This
is an impractical restriction as a thread, so we do not show
child-first techniques that require stateless parent ULTs.

Eager Stack Management for SC (*3): From the view-
point of stack management, SC follows the LSA policy;
SC allocates a stack for a scheduler not on creation but on
deviation. One might suggest allocating a stack and a thread
descriptor together on creation for SC, but such an eager
stack allocation strategy does not work for SC. Full, RoC,
and SS always keep the same pair of a stack and a thread
descriptor, while SC needs to decouple the management
of the stack and thread descriptor since a stack required
on deviation is assigned to a new scheduler, not a thread

associated with a thread descriptor.

4 EVALUATION

In this section, we evaluate the performance of all the
threading techniques presented in the preceding sections
with a microbenchmark and three fine-grained parallel ap-
plications. All the parent- and child-first threading tech-
niques were implemented in Argobots [11], a highly opti-
mized user-level threading library. Our experimental envi-
ronments are described in Table 3. All the programs were
compiled with -O3. We set the same stack size (64 KB
for ExaFMM and 16 KB for the others) to both ULTs and
schedulers to the advantage of SC. All results reported in
this paper are the arithmetic mean. The error bars in the
charts indicate the 95% confidence intervals.

4.1 Fork-Join Microbenchmark
We first evaluate the threading overheads with the fork-
join microbenchmark used in the preceding sections; the
code is presented in Fig. 9. This microbenchmark repeats
creating and joining N ULTs on a single worker. Deviations
are artificially introduced by yield thd(); the deviation
probabilityD is calculated by n/N , where nULTs uniformly
selected out of N ULTs yield once. We used a lightweight
private pool [11] to minimize overheads of pool operations.
In the microbenchmark, the set of N fork-join operations
was repeated 219/N times and obtained the average of the
execution time. The result of RtC is at n = 0 (i.e., D = 0%)
because RtC cannot yield. We ran this microbenchmark 50
times on Skylake, KNL, POWER8, and ARM64.

4.1.1 Performance with Different Deviation Probabilities
Figure 22 shows the results with various D values where N
is fixed to 4,096 in order to see how the deviation probability
affects the threading overheads. For better visibility, we
separate results by scheduling type; Figure 22a shows the
parent-first techniques while Fig. 22b plots only the child-
first ones. First, all the results indicate the same performance
trend: SC, SS, and RoC outperformed Full at D = 0%
because these dynamic promotion techniques alleviate the
context management overheads when no deviation takes
place. In the case of child-first scheduling, at D = 0% C-
RoC outperformed C-Full on KNL, POWER8, and ARM64
by reducing context-switching overheads, while it degraded
performance on Skylake because of complex control as
we discussed in Section 3.2.2. LSA and ESR (-L and -E)

10

TABLE 3
Experimental environments used in the paper.

Name Skylake KNL POWER8 ARM64
Processor Intel Xeon Platinum 8180M Intel Xeon Phi 7210 IBM S822LC (10 cores) AMD Opteron A1120
Architecture Skylake Knights Landing POWER8 LE ARMv8-A
Frequency 2.5 GHz 1.3 GHz 2.9 GHz 1.7 GHz
of sockets 2 1 2 1
of cores 56 64 20 4
of HWTs 112 256 160 4
Memory 396 GB 198 GB 130 GB 8 GB
OS Red Hat 7.5 Red Hat 7.5 Red Hat 7.6 openSUSE 42.2
Compilers Intel Compiler 17.2.174 Intel Compiler 17.2.174 IBM XL Compilers 16.1.1 GNU Compilers 4.8.5

0% 25% 50% 75% 100%
Deviation probability (D)

0
100
200
300
400
500

C
yc

le
s

Skylake

0% 25% 50% 75% 100%
Deviation probability (D)

0

500

1000

1500

2000
KNL

0% 25% 50% 75% 100%
Deviation probability (D)

0

500

1000

1500
POWER8

0% 25% 50% 75% 100%
Deviation probability (D)

0

200

400

600

800

Full Full-L RoC RoC-L SS SS-L SC RtC

ARM64

(a) Parent-first scheduling

0% 25% 50% 75% 100%
Deviation probability (D)

0
100
200
300
400
500

C
yc

le
s

Skylake

0% 25% 50% 75% 100%
Deviation probability (D)

0

500

1000

1500

2000
KNL

0% 25% 50% 75% 100%
Deviation probability (D)

0

500

1000

1500
POWER8

0% 25% 50% 75% 100%
Deviation probability (D)

0

200

400

600

800

C-Full C-Full-E C-RoC C-RoC-E

ARM64

(b) Child-first scheduling
Fig. 22. Cycles per fork-join with various D values (N = 4,096).

mitigated cache misses at the cost of additional stack man-
agement overheads, with elevated performance overall. The
performance of SS-L and SC was close to that of RtC, but
these threading techniques have programming constraints
as discussed in Section 3.

On the other hand, at a larger D, SC, SS, RoC, and C-
RoC were slower than the traditional fully fledged tech-
niques (Full and C-Full) because the dynamic promotion
techniques lose their advantages and become extra over-
heads. LSA and ESR (-L and -E) further degraded the
performance since they no longer promote stack reuse and
result in additional overheads to manage thread descriptors
and stacks independently.

Although there is a fundamental scheduling difference
between parent- and child-first techniques, the results of
corresponding techniques (e.g., RoC and C-RoC) are sim-
ilar because the expensive context-switching operations are
common; in terms of context-switching overheads, there is
no significant performance difference between parent- and
child-first scheduling, while the applicability of dynamic
promotion techniques is limited in the child-first cases.
We note that, as pointed out by vast literature (e.g., [40],
[41], and [42]), the scheduling policies have been known to
affect the application performance. KMeans and ExaFMM in
our evaluation showcase the difference in application-level
performance, while in both cases the dynamic promotion
methods enhance performance by reducing threading over-
heads.

4.1.2 Performance with Different Numbers of ULTs
With the same microbenchmark, we examined the effect of
the dynamic promotion techniques by varying ULT counts
(N) while fixing D to 0% and 100%. Figure 23 shows fork-
join overheads with different N . Overall the performance
trend is the same; at D = 0% the dynamic promotion
techniques (SC, SS, RoC, and C-RoC) are faster than fully
fledged techniques (Full and C-Full). With smaller N , how-
ever, LSA and ESR (-L and -E) are insignificant because
stack accesses hit caches without LSA and ESR; on the con-
trary, decoupling the management of thread descriptors and
stacks negatively affects the performance even at D = 0%.
The results indicate that if only few ULTs are used in the
runtime, LSA and ESR do not contribute to performance im-
provement and possibly just impose additional overheads.

4.1.3 Performance on Different Architectures
The effectiveness of the dynamic promotion techniques
varies on different architectures. Figure 22a and Figure 22b
indicate that KNL shows the largest performance differ-
ence at D = 0%; the gaps between Full and RtC are
1.7x, 3.8x, 2.4x, and 2.2x while speedups of C-RoC-E over
C-Full are 1.4x, 2.0x, 1.3x, and 1.3x on Skylake, KNL,
POWER8, and ARM64, respectively. This difference comes
from the design of KNL. In comparison with Skylake, which
is a general-purpose Intel CPU, in spite of the identical
calling convention, KNL showed a larger gap because of
its throughput-oriented architecture; KNL poorly performs
pointer-based operations with many branches and noncon-
tiguous memory accesses, both of which highly impact

11

101 102 103 104 105

of ULTs (N)

0

100

200

300
C

yc
le

s
Skylake

101 102 103 104 105

of ULTs (N)

0

200

400

600
KNL

101 102 103 104 105

of ULTs (N)

0
100
200
300
400
500 POWER8

101 102 103 104 105

of ULTs (N)

0
100
200
300
400
500

Full Full-L RoC RoC-L SS SS-L SC RtC

ARM64

(a) Parent-first scheduling (D = 0%)

101 102 103 104 105

of ULTs (N)

0

100

200

300

C
yc

le
s

Skylake

101 102 103 104 105

of ULTs (N)

0

200

400

600
KNL

101 102 103 104 105

of ULTs (N)

0
100
200
300
400
500 POWER8

101 102 103 104 105

of ULTs (N)

0
100
200
300
400
500

C-Full C-Full-E C-RoC C-RoC-E

ARM64

(b) Child-first scheduling (D = 0%)

101 102 103 104 105

of ULTs (N)

0

200

400

600

800

C
yc

le
s

Skylake

101 102 103 104 105

of ULTs (N)

0

500

1000

1500
KNL

101 102 103 104 105

of ULTs (N)

0
500

1000
1500
2000
2500 POWER8

101 102 103 104 105

of ULTs (N)

0

500

1000

1500

2000

Full Full-L RoC RoC-L SS SS-L SC RtC

ARM64

(c) Parent-first scheduling (D = 100%)

101 102 103 104 105

of ULTs (N)

0

200

400

600

800

C
yc

le
s

Skylake

101 102 103 104 105

of ULTs (N)

0

500

1000

1500
KNL

101 102 103 104 105

of ULTs (N)

0
500

1000
1500
2000
2500 POWER8

101 102 103 104 105

of ULTs (N)

0

500

1000

1500

2000

C-Full C-Full-E C-RoC C-RoC-E

ARM64

(d) Child-first scheduling (D = 100%)
Fig. 23. Cycles per fork-join with various numbers of ULTs (D is fixed to either 0% or 100%).

the context-switching performance. The context-switching
overhead on POWER8 is also high. For example, at D = 0%
and N = 128, the performance gap between Full and RtC
is 2.7x while the gaps of Skylake, KNL, and ARM64 are
between 1.9x and 2.2x. Context switching on POWER8 is
costly because more instructions are required to save its
larger context; the context size of POWER8 is as large as
528 bytes because its ABI marks more registers as callee-
saved [31]. In contrast, the size of x86/64 and ARMv8-A
is only 64 bytes and 176 bytes, respectively [26], [30]. We
observe that the dynamic promotion techniques are more
effective on architectures that are throughput oriented or
have a large context.

4.1.4 Memory Usage with Different Deviation Probabilities
We measured the memory usage of each threading tech-
nique to evaluate the impact of stack reuse. We ran the
same benchmark with various D values where N is fixed to
65,536. Figure 24 shows the maximum memory consump-
tion on Skylake obtained with ru maxrss of getrusage().

0% 25% 50% 75% 100%
Deviation probability (D)

0.0

0.5

1.0

1.5

M
em

or
y

us
ag

e
[G

B
] Full

Full-L
RoC
RoC-L

SS
SS-L
SC
RtC

(a) Parent-first scheduling

0% 25% 50% 75% 100%
Deviation probability (D)

0.0

0.5

1.0

1.5

M
em

or
y

us
ag

e
[G

B
] C-Full

C-Full-E
C-RoC
C-RoC-E

(b) Child-first scheduling
Fig. 24. Total memory consumption on Skylake where N = 65,536.

Results of the other machines were almost identical and
hence are omitted. Figure 24 shows that at smallerD thread-
ing techniques with LSA and ESR (Full-L, RoC-L, SS-L,
C-Full-E, and C-RoC-E) significantly reduced the memory
footprint by reusing a stack, as do RtC and SC. On the
other hand, methods without stack reuse always consumed
about 1 GB (equal to the stack size (16 KB) multiplied by
N = 65,536). Although the modern hardware has abundant

12

memory resources, this difference can be more significant
when the stack size is set to a large value or more ULTs are
created. In such a case, dynamic promotion techniques with
LSA and ESR would be beneficial.

We evaluated the overheads of the threading tech-
niques with a microbenchmark. The following evaluates the
benefits of the dynamic promotion techniques with three
fine-grained parallel applications: KMeans, ExaFMM, and
Graph500. These applications utilize a context switch to ef-
ficiently schedule other ready work when currently running
ULTs need to wait for locks, completions of other ULTs, or
communications.

4.2 OpenMP-Parallelized KMeans
OpenMP is one of the most widely used parallel program-
ing systems for multithreading. OpenMP offers threads
and tasks as yieldable parallel units (i.e., barrier and
taskyield10), so they were created as fully fledged threads
in ULT-based OpenMP systems [6], [46], [47]. However,
not all OpenMP threads and tasks encounter deviations
in real programs (e.g., no task scheduling during execu-
tion). The dynamic promotion techniques are expected to
improve performance when deviations rarely happen. We
used OpenMP-parallelized KMeans for evaluation.

KMeans is a machine learning algorithm that partitions
N data points into K clusters. Our benchmark is based on
the KMeans implementation found in NU-MineBench [48].
In the KMeans algorithm, a point is considered belonging
to a cluster with the nearest center. The algorithm first
randomly distributes each center of K clusters and repeats
updating the cluster centers to the centroids of their points
until the positions of the centers get stable enough. The
computation of the new centroids is parallelized by a simple
method adopted by Chabbi et al. [49]; in our benchmark,
each of N ULTs is associated with a data point and updates
the partial sum of the centroid of the nearest cluster. At the
end of an iteration a master ULT sums up the partial results.
The partial sums are shared among workers, so the updates
are protected by locks to avoid data race.

To control the lock granularity, we artificially change the
number of replications per cluster, which we denote by r.
When r = 1, each cluster has one partial sum protected by
a corresponding lock, so any attempt to update the partial
sum of the same cluster incurs lock contention. Creating
multiple partial sums increases the reduction cost at the
end of iterations but alleviates contention. When r > 1,
every cluster has r partial sums each of which is accessed
by only r/W workers, where W is the number of workers.
Accordingly, no contention occurs if r =W .

The kernel of KMeans was parallelized with OpenMP by
a nested parallel loop; the outer loop creates W OpenMP
threads each of which spawns N/W tasks in the inner
loop. An Argobots-based OpenMP runtime library called
BOLT [50] maps OpenMP threads and tasks to ULTs. We
used KNL for the evaluation, so W was set to 64 in this
benchmark. We built the program with Intel compilers,11

while we needed to apply manual vectorization to the

10The specification allows no operation for taskyield [43], while
several studies pointed out the usefulness of yieldable tasks [44], [45].
In this benchmark, we assume tasks yield at taskyield.

11BOLT is a runtime library compatible with LLVM and Intel
OpenMP compilers, so the compiler modification is unnecessary.

1 2 4 8 16 32 64
of replicates (r)

0.0E7

0.5E7

1.0E7

1.5E7

2.0E7

2.5E7

T
hr

ou
gh

pu
t

(#
 o

f p
oi

nt
s/

s)

(ratio)
Full

Full-L
RoC

RoC-L
SS

SS-L
SC

0%

20%

40%

60%

80%

100%

R
at

io
 o

f p
ro

m
ot

ed
 U

LT
s

(a) Parent-first scheduling

1 2 4 8 16 32 64
of replicates (r)

0.0E7

0.2E7

0.4E7

0.6E7

0.8E7

1.0E7

1.2E7

T
hr

ou
gh

pu
t

(#
 o

f p
oi

nt
s/

s)

(ratio)
C-Full

C-Full-E
C-RoC

C-RoC-E

0%

20%

40%

60%

80%

100%

R
at

io
 o

f p
ro

m
ot

ed
 U

LT
s

(b) Child-first scheduling
Fig. 25. Throughput of KMeans using 64 cores. The ratio of promoted
ULTs is calculated by dividing the number of promoted ULTs by the
number of created ULTs during execution. We obtain these results with
SC for parent-first scheduling and C-RoC-E for child-first scheduling.
Other dynamic promotion techniques show similar results.

compute kernel to exploit SIMD units in KNL. We used
the first 10% data of KDD Cup 1999 [51]; our experiment
classifiesN = 5.0×105 points, each of which has 41 floating-
point features,12 into K = 24 clusters as instructed by the
original problem statement. We changed r from 1 to 64 and
measured the performance with different ULT types.

To exploit better locality, we set the OpenMP’s close
affinity for the parent-first threading techniques. The affinity
of ULTs can be implemented by limiting the access of
a specific pool; BOLT implements the OpenMP’s affinity
by limiting ULTs associated with OpenMP threads to be
scheduled by a specific worker associated with a specific
core [50]. Although this strategy works well in a parent-first
case, such an affinity setting inhibits dynamic load balancing
in a child-first case. Consider a case where r is 64 and no
deviation happens in innermost ULTs (an inner OpenMP
tasks). Under the child-first scheduling policy, not a child
ULT but a parent ULT (i.e., an outer OpenMP thread) is
made stealable. Because of the affinity setting, however, a
parent ULT cannot be scheduled other than by a specific
worker, disabling dynamic load balancing across workers.
Thus, we disabled the affinity setting for the child-first
threading techniques.

Figure 25 shows the average throughputs of 64 execu-
tions each of which repeats the KMeans algorithm five times
after a warm-up (one execution). An increase in replicates
alleviates lock contention and reduces the deviation proba-
bility, elevating overall performance. At a larger r, LSA and
ESR (-L and -E) enhances performance. Reducing context-
switching overheads (SC, SS-L, RoC-L, and C-RoC-E) fur-
ther improves throughputs. With fewer replicates, fully
fledged techniques perform better, but the absolute perfor-
mance is worse because of significant lock contention. The
results show that the dynamic promotion techniques speed
up programs if deviations happen infrequently, whereas the
threading overheads often get negligible when deviations
are frequent because the causes of deviation become the
performance bottleneck. We also note that although the

12We arbitrarily map string-typed values to floating-point values.

13

dynamic promotion methods improve performance with
both parent- and child-first scheduling policies, the KMeans
algorithm prefers parent-first scheduling because it suits the
OpenMP’s affinity setting.

1 2 4 8 16 32 64
of workers

0

10

20

30

40

R
el

at
iv

e
pe

rfo
rm

an
ce

[F
ul

l+
1E

S=
1]

Full
Full-L
RoC
RoC-L
SS
SS-L
SC

(a) Parent-first scheduling

1 2 4 8 16 32 64
of workers

0

10

20

30

40

R
el

at
iv

e
pe

rfo
rm

an
ce

[F
ul

l+
1E

S=
1]

C-Full
C-Full-E
C-RoC
C-RoC-E

(b) Child-first scheduling
Fig. 26. Relative performance of ExaFMM on KNL. The baseline is the
performance of Full with a single worker.

4.3 ExaFMM
ExaFMM [52] is a highly optimized O(N) N-Body solver
using a fast multiple method. In the kernel, a tree is tra-
versed in a divide-and-conquer manner, and leaf nodes
calculate the actual forces. Recursive divide-and-conquer
task parallelism has been known to efficiently parallelize
the ExaFMM kernel [53]. Deviations can happen while
waiting for completion of child ULTs, but they never oc-
cur in leaf nodes because they just perform computation
without synchronization. The most efficient solution seems
mapping leaf nodes to RtC and internal nodes to non-RtC
ULTs. However, this optimization requires identifying leaf
ULTs on creation, which is not only cumbersome but also
expensive if the leaf condition is complicated. The dynamic
promotion techniques alleviate the programmers’ burden
without hurting performance.

We ran ExaFMM ten times on KNL with --ncrit 16
-t 0.15 -P 4 --dual -n 524288 as arguments. As the
number of workers changed, we adjusted --nspawn to keep
the number of created ULTs per worker constant (within 5%
of error) while --nspawn 256 was set with 64 workers. We
measured the performance of the tree traversal where the
program spends more than 90% of the total execution time.
We manually vectorized the compute kernels to efficiently
utilize SIMD units in KNL. To reduce internal nodes, we
changed the way of work decomposition and collapsed
internal nodes in the traverse tree while keeping the com-
putation of leaf nodes.

Figure 26 presents the performance of ExaFMM with dif-
ferent numbers of workers. Since the deviation probability
is low (regardless of the number of workers, approximately
1.5% of ULTs are dynamically promoted), the dynamic pro-
motion techniques achieved better performance. LSA and
ESR (-L and -E) improved performance with 64 workers. Re-
duction of context-switching overheads contributes to a 9%
speedup for parent-first (SC over Full-L) and 2% for child-
first scheduling (C-RoC-E over C-Full-E). This ExaFMM
showcases the merit of child-first scheduling; the child-first
methods overall perform better than the parent-first ones
because child-first scheduling can efficiently exploit locality
when parallelism is deep and narrow [12].

We note that the dynamic promotion techniques are
suitable for divide-and-conquer recursive parallelism; in a

TABLE 4
Experimental environment of Graph500

Processor Intel Xeon Phi 7230 Architecture Knights Landing
Frequency 1.3 GHz # of sockets 1
of cores 64 # of HWTs 128
Memory 99 GB OS CentOS 7.6
Compilers Intel Compiler 17.0.4 Interconnect Intel Omni-Path

103 104 105

Buffer length (# of vertices)

0.0E8

0.5E8

1.0E8

1.5E8

2.0E8

2.5E8

T
hr

ou
gh

pu
t

(#
 o

f p
oi

nt
s/

s)

Full
Full-L
RoC
RoC-L
SS
SS-L
SC

(a) Parent-first scheduling

103 104 105

Buffer length (# of vertices)

0.0E8

0.5E8

1.0E8

1.5E8

2.0E8

2.5E8

T
hr

ou
gh

pu
t

(#
 o

f p
oi

nt
s/

s)

C-Full
C-Full-E
C-RoC
C-RoC-E

(b) Child-first scheduling
Fig. 27. Traversed edges per second of Graph500 using 1,024 cores.

k-ary tree approximately 1 − 1
k% of ULTs are leaves;13 and

therefore if no deviation happens in leaf ULTs (e.g., no
yielding), D is approximately 1

k%. The results in Fig. 22
show that the dynamic promotion techniques perform better
than the fully fledged threads whenD is less than 30 to 50%.
Because D is at most 50% (k = 2), the dynamic promotion
techniques are beneficial in most cases.

4.4 Distributed Graph500

Graph500 [54] is a well-known benchmark that traverses a
distributed graph in a breadth-first manner. Our Graph500
is based on the reference implementation of MPI+Thread
found in [55]. Since each process has only a part of the whole
graph, interprocess communication is necessary in order
to visit vertices in remote subgraphs. Specifically, in each
iteration, every process repeats visiting adjacent vertices. A
process can update a vertex if locally owned, while it needs
to send a message to another process if the vertex exists in
a remote node. In order to avoid the finest communication,
message aggregation is commonly adopted. Each process
has buffers associated with all the target ranks to store
visit messages; messages are sent only when a buffer gets
full and thus needs to be flushed. Because the bottleneck
of Graph500 is communication, hybrid parallelism is often
used to reduce the intranode communication overheads.
MPI+Thread, where ULT is used as Thread, has been stud-
ied to exploit fine-grained communication on a distributed
system [56], [57], because a ULT can efficiently switch to
another ULT when an MPI function blocks. We note that the
current state-of-the-art MPI+Thread implementation [58]
sometimes acquires a lock even in nonblocking MPI calls
(e.g., MPI Isend() and MPI Test()) since MPI functions need
to periodically handle global progress for active messages
and nonblocking collectives, which is typically protected
by a global lock. The dynamic promotion techniques are
expected to reduce overheads in cases where ULTs do not
call an MPI function or happen to avoid lock contentions in
the MPI runtime.

13Denote the number of internal nodes in a task tree N and the
number of leaf nodes n. When N = 1, (N,n) is (1, k). Because 1 leaf
can be replaced with 1 internal node and k leaves, (N,n) becomes
(N,N(k−1)+1). Hence, the ratio of leaf ULTs is calculated as n

N+n
≈

1− 1
k

with a larger N .

14

We parallelized the Graph500 implementation in [55]
with Argobots and evaluated the performance over
Argobots-aware MPICH [58]. We associated one visit with a
ULT to focus on threading overheads. A buffer length B is
a parameter to control the communication granularity; with
a larger B, more memory is consumed, but more messages
are aggregated. We set a scale factor to 26, so the whole
graph over nodes consists of 226 vertices. We executed this
benchmark on 16 KNLs described in Table 4. We spawned a
single MPI process per node, each of which ran 64 workers,
so 1,024 workers were used in total. Figure 27 shows the
averages of ten times execution. In this setting, the ratio of
promoted ULTs is less than 1.0%, highlighting the efficacy
of the dynamic promotion techniques. The fully fledged
(Full and C-Full) techniques should perform better with
extremely small B and higher deviation probability, while
the communication overheads would mask their benefit.

4.5 How to Choose the Best Threading Technique

This paper investigated several user-level threading tech-
niques that have different performance characteristics and
programming constraints. As all the threading techniques
can coexist in a single library, users and developers can
choose the suitable techniques from Table 1 for their as-
suming workloads. Practically, the first decision should be a
choice of either parent- or child-first scheduling. As demon-
strated in our evaluation, parent-first scheduling tends to
perform better for shallow parallelism (e.g., loop parallelism
in KMeans) while a child-first scheduling is preferred when
the parallelism is deep and nested (e.g., divide-and-conquer
parallelism in ExaFMM). More sophisticated strategy would
be a mixed scheduling policy [59], which is out of scope of
this work. The optimal technique under a specific schedul-
ing policy should be chosen based on scenarios regarding
the number of created ULTs, typical deviation probability,
and required threading capabilities, all of which depend on
their algorithms, machines, and inputs.

If the user has no idea about the application behavior, we
recommend RoC-L for parent-first scheduling or C-RoC-E
for child-first scheduling; they perform well at low devi-
ation probability with minimum memory footprint while
retaining all the threading capabilities. Nevertheless, among
fully capable threads, these two do not always perform the
best. When deviation probability is high, they are slower
than Full and C-Full. As we have seen in the evaluation,
however, when deviations are frequent, threading over-
heads often become negligible because events that cause
deviations (e.g., lock contention and blocking communica-
tion) hide the benefit of lightweight threads. RoC and C-
RoC also outperform RoC-L and C-RoC-E when deviations
rarely happen, and fewer ULTs are used because LSA and
ESR are not effective when stack accesses hit caches. Al-
though our microbenchmark uses an empty function for a
thread function, real thread functions are likely to require
larger function stacks for computation, rendering LSA and
ESR more beneficial. We recommend RoC-L or C-RoC-E in
general, but the most promising approach is the automatic
selection of the best threading techniques, which is one
direction of our future work.

5 RELATED WORK

Although numerous parallel systems have adopted ULTs as
an implementation of lightweight parallel units, the focus
of the past papers on ULT-based systems is not a threading
technique but other components such as programmability,
usability, portability, abstraction, and other performance op-
timizations such as scheduling and thread pool implementa-
tions. The performance comparison between these parallel
systems measured only the overall performance [60], [61]
and fundamentally lacked a detailed performance analysis
of threading techniques. This section describes notable work
out of countless studies on ULTs from the aspect of user-
level threading techniques.

Fully Fledged Threads: Fully fledged threads are widely
used to implement ULTs with full threading capabilities.
For example, Qthreads [4], Nanos++ [5], Converse [7],
MassiveThreads [10], and Argobots [11] are well-known
threading libraries that use fully fledged threads. Their stack
management policies are different, however. For example,
Converse 6.9.0, MassiveThreads 1.00, and Argobots 1.0rc2
employ a parent-first fully fledged ULT without LSA while
Qthreads 1.15 and Nanos++ 0.15 implement it with LSA.
MassiveThreads 1.00 also supports a child-first thread,
which is implemented with ESR. The trade-off disclosed by
this paper would be helpful for these runtimes to choose
the best thread implementation based on their assuming
workloads. Evaluating the performance impact of choosing
the optimal technique in these libraries is lifted as our future
work.

Saving Registers: We did not evaluate techniques that
do not change stacks but only save registers, but some
previous studies including LazyThreads [36], StackThread-
s/MP [37], [38], and Fibril [39] proposed such techniques for
child-first scheduling. Cilk 1.0-3 over Tapir/LLVM [62] is an
actively developed multitasking framework that adopts this
idea. Their approaches assume the following premises:

1. All local variables in the stack are addressed by a frame
pointer instead of a stack pointer.

2. The call stack is not dynamically grown after a function
prologue.

3. All threads are joined in a function that creates them
(i.e., fully strict computation [22]).

Under these premises, a parent can call a child function
on top of the parent stack after saving (or clobbering) callee-
saved registers. The algorithm works as follows. If no work
stealing happens, the child just returns to the parent. When
another worker steals the parent ULT, the thief worker
restores the original registers while setting a newly allocated
stack to a stack pointer and resumes the parent on top of the
new stack. Premise 1 guarantees that spaces for all local
variables have already been allocated or reserved before
the child invocation and these locations are referenced by
a frame pointer. Premise 2 assures no stack growth, so a
parent thread will not erode the stack used by the child
thread. We note that premise 2 allows function calls because
the stack address of a new function is based on a stack
pointer. Premise 3, which narrows the expressiveness of
parallelization, is required in order to prevent the caller
of the parent ULT from overwriting the stack of the child
thread prior to the completion of a child.

However, premises 1 and 2 require compiler
modifications, and therefore StackThreads/MP [38],

15

LazyThreads [36], and Cilk [20] modified a compiler.
Yang and Mellor-Crummey [39] tried to avoid
compiler modifications by adding a GCC compiler
flag, -fno-omit-frame-pointer, but it does not guarantee
premise 1. Unfortunately, the current popular C compilers
do not provide a flag that guarantees premises 1 and 2.
These techniques are not evaluated in this paper because
our work targets threading techniques without compiler
modifications.

Stack Separation: Some studies have proposed methods
that omit register manipulations but change only the stacks.
Their approaches are different from ours in that a thread
invocation function adopts a special calling convention that
only marks registers for a stack pointer and an instruction
address as callee-saved (e.g., Intel CilkPlus [63]). This ap-
proach can be seen as a technique that utilizes a calling
convention to save all the necessary registers (including
registers marked as callee-saved in widely adopted ABIs).
This approach requires patching a compiler to recognize
a custom calling convention, whereas neither SS nor SS-L
requires compiler modification.

Scheduler Creation: A few parallel systems have
adopted the scheduler creation technique. Chores [32] and
Wool [33] are parent-first threading libraries that utilized
this method to reduce threading overheads. Concurrent
Cilk [34] is a child-first threading library that adopted this
technique to implement a yield feature in Intel CilkPlus [64].
The past work, however, solely implemented the scheduler
creation technique and thus lacked performance comparison
and analysis of programming constraints. We also note that
their approaches specially handle ULTs that encountered
deviations, so promoted ULTs are differently scheduled
from unpromoted ULTs. Our techniques uniformly schedule
all ULTs including promoted SC threads.

Run-to-Completion Threads: Numerous runtime sys-
tems including Filaments [9], Qthreads [4],14 and Argob-
ots [11] support a run-to-completion thread in order to
eliminate all the cost associated with user-level context
switch. OpenMP task implementations found in the popular
OpenMP runtimes [1], [2], [3] and task in Intel TBB [65]
are essentially classified as RtC threads but not “run to
completion” in a narrow sense because they can wait for
the completion of children.

In general, RtC is lightweight and easy to implement,
but its constraint significantly limits the applicability be-
cause it cannot perform a context switch at an arbitrary
point. Several papers have argued yieldable threads in non-
yieldable threading packages from performance and pro-
grammability perspectives. For example, Zakian et al. [34]
showed that a yield operation in Cilk [20] enables efficient
blocking communication and synchronization while several
papers on OpenMP [44], [45] reported the same benefits of
yieldable OpenMP tasks. Graph500 in our evaluation is a
good example that RtC cannot execute; removing a yield
operation from a polling loop in the MPI runtime might
cause a deadlock.

Other Threading Techniques: Several threading tech-
niques cannot be classified into the categories above. Sivara-

14Qthreads executes a thread on top of the scheduler’s stack
when QTHREAD SPAWN SIMPLE is specified. No blocking operation (i.e.,
qthread yield()) inside threads is allowed.

makrishnan et al. [66] proposed MultiMLton, which allows
relocation of function stacks. This technique might be ap-
plicable to functional languages, but it can hardly support
C/C++ programs. Cilk-M [21] enables stack copying by
modifying OS to expose the same address space so that
a pointer reference to a call stack is valid after copying a
stack. This technique requires OS modification. Tascell [67]
is a compiler-based technique adopting a lazy task cre-
ation policy. This technique invokes threads in a sequential
manner and lazily creates logical threads if necessary by
backtracking call stacks. Acar et al. [18] propose a threading
technique that lazily creates parallel threads at a heartbeat.
This method requires the cactus stack implementation [36],
which breaks the interoperability with precompiled libraries
and thus is not suitable for a generic threading library.

6 CONCLUDING REMARKS

This work extensively explores user-level threading tech-
niques that are suitable for threading libraries from the
viewpoint of threading overheads. Our in-depth instruction-
and cache-level analysis of twelve methods revealed their
performance characteristics and programming constraints.
We found that deviation inhibits the run-to-completion ex-
ecution of thread and highly impacts fork-join overheads.
We implemented all the techniques in the same runtime
system and evaluated fork-join overheads on Skylake, KNL,
POWER8, and ARM64 architectures. Our evaluation with
a microbenchmark and three fine-grained applications in-
dicates that the dynamic promotion techniques that defer
the context management show the best trade-off between
fork-join overheads and programming constraints when the
chances of deviation are low.

Our quest is a comprehensive understanding of the
design and implementation for lightweight threading li-
braries. This work solely investigates fork-join performance.
Arguably, other factors including schedulers and thread
pools are known to highly affect the overall performance.
Investigating their design and performance is our future
work.

ACKNOWLEDGMENT

This research was supported by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of the U.S.
Department of Energy Office of Science and the National
Nuclear Security Administration, in particular, its subproject
on Scaling OpenMP with LLVm for Exascale performance
and portability (SOLLVE). We gratefully acknowledge the
computing resources provided and operated by LCRC and
JLSE at Argonne National Laboratory. This material is based
upon work supported by the U.S. Department of Energy,
Office of Science, under Contract DE-AC02-06CH11357.

REFERENCES

[1] D. Novillo, “OpenMP and automatic parallelization in GCC,” in
Proceedings of the GCC Developers’ Summit, June 2006, pp. 23–24.

[2] OpenMP®: Support for the OpenMP Language. https://openmp.
llvm.org/.

[3] Intel® OpenMP* Runtime Library. https://www.openmprtl.org/.
[4] K. B. Wheeler, R. C. Murphyand, and D. Thain, “Qthreads: An

API for programming with millions of lightweight threads,” in
Proceedings of the 22nd IEEE International Parallel and Distributed
Processing Symposium, ser. IPDPS ’08, Apr. 2008, pp. 1–8.

16

[5] X. Martorell, J. Labarta, N. Navarro, and E. Ayguadé, “A library
implementation of the nano-threads programming model,” in
Proceedings of the Second European Conference on Parallel Processing,
ser. EuroPar ’96, Aug. 1996, pp. 644–649.

[6] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell,
X. Martorell, and J. Planas, “OmpSs: A proposal for programming
heterogeneous multi-core architectures.” Parallel Processing Letters,
vol. 21, no. 02, pp. 173–193, Mar. 2011.

[7] L. V. Kalé, J. Yelon, and T. Knauff, “Threads for interoperable
parallel programming,” in Proceedings of the Ninth International
Workshop on Languages and Compilers for Parallel Computing, ser.
LCPC ’96, Aug. 1996, pp. 534–552.

[8] L. V. Kale and S. Krishnan, “CHARM++: A portable concurrent
object oriented system based on C++,” in Proceedings of the Eighth
Annual Conference on Object-oriented Programming Systems, Lan-
guages, and Applications, ser. OOPSLA ’93, Sept. 1993, pp. 91–108.

[9] D. K. Lowenthal, V. W. Freeh, and G. R. Andrews, “Efficient
support for fine-grain parallelism on shared-memory machines,”
Concurrency: Practice and Experience, vol. 10, no. 3, pp. 157–173,
Mar. 1998.

[10] J. Nakashima and K. Taura, “MassiveThreads: A thread library for
high productivity languages,” Lecture Notes in Computer Science –
Concurrent Objects and Beyond, vol. 8665, pp. 222–238, Jan. 2014.

[11] S. Seo, A. Amer, P. Balaji, C. Bordage, G. Bosilca, A. Brooks,
P. Carns, A. Castelló, D. Genet, T. Herault, S. Iwasaki, P. Jindal,
L. V. Kalé, S. Krishnamoorthy, J. Lifflander, H. Lu, E. Mene-
ses, M. Snir, Y. Sun, K. Taura, and P. Beckman, “Argobots: A
lightweight low-level threading and tasking framework,” IEEE
Transactions on Parallel and Distributed Systems, vol. PP, no. 99, pp.
512–526, Oct. 2017.

[12] E. Mohr, D. A. Kranz, and R. H. Halstead, Jr., “Lazy task creation:
A technique for increasing the granularity of parallel programs,”
in Proceedings of the 1990 ACM Conference on LISP and Functional
Programming, ser. LFP ’90, June 1990, pp. 185–197.

[13] S. Iwasaki, A. Amer, K. Taura, and P. Balaji, “Lessons learned
from analyzing dynamic promotion for user-level threading,” in
Proceedings of the 2018 IEEE/ACM International Conference for High
Performance Computing, Networking, Storage, and Analysis, ser. SC
’18, Nov. 2018, pp. 23:1–23:12.

[14] D. Spoonhower, G. E. Blelloch, P. B. Gibbons, and R. Harper,
“Beyond nested parallelism: Tight bounds on work-stealing over-
heads for parallel futures,” in Proceedings of the 21st Annual Sym-
posium on Parallelism in Algorithms and Architectures, ser. SPAA ’09,
Aug. 2009, pp. 91–100.

[15] A. Duran, J. Corbalán, and E. Ayguadé, “An adaptive cut-off for
task parallelism,” in Proceedings of the 2008 IEEE/ACM International
Conference for High Performance Computing, Networking, Storage, and
Analysis, ser. SC ’08, Nov. 2008, pp. 36:1–36:11.

[16] U. A. Acar, V. Aksenov, A. Charguéraud, and M. Rainey, “Provably
and practically efficient granularity control,” in Proceedings of the
24th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP ’19, Feb. 2019, pp. 214–228.

[17] A. Tzannes, G. C. Caragea, U. Vishkin, and R. Barua, “Lazy
scheduling: A runtime adaptive scheduler for declarative paral-
lelism,” ACM Trans. Program. Lang. Syst., vol. 36, no. 3, pp. 10:1–
10:51, Sept. 2014.

[18] U. A. Acar, A. Charguéraud, A. Guatto, M. Rainey, and
F. Sieczkowski, “Heartbeat scheduling: Provable efficiency for
nested parallelism,” in Proceedings of the 39th ACM SIGPLAN
Conference on Programming Language Design and Implementation, ser.
PLDI ’18, June 2018, pp. 769–782.

[19] A. Adya, J. Howell, M. Theimer, W. J. Bolosky, and J. R. Douceur,
“Cooperative task management without manual stack manage-
ment,” in Proceedings of the General Track of the Annual Conference on
USENIX Annual Technical Conference, ser. ATEC ’02, June 2002, pp.
289–302.

[20] M. Frigo, C. E. Leiserson, and K. H. Randall, “The implementation
of the Cilk-5 multithreaded language,” in Proceedings of the ACM
SIGPLAN 1998 Conference on Programming Language Design and
Implementation, ser. PLDI ’98, June 1998, pp. 212–223.

[21] I.-T. A. Lee, S. Boyd-Wickizer, Z. Huang, and C. E. Leiserson, “Us-
ing memory mapping to support cactus stacks in work-stealing
runtime systems,” in Proceedings of the 19th International Conference
on Parallel Architectures and Compilation Techniques, ser. PACT ’10,
Sept. 2010, pp. 411–420.

[22] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou, “Cilk: An efficient multithreaded runtime
system,” in Proceedings of the Fifth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, ser. PPoPP ’95, July
1995, pp. 207–216.

[23] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded
computations by work stealing,” Journal of the ACM, vol. 46, no. 5,
pp. 720–748, Sept. 1999.

[24] Boost C++ Libraries. https://www.boost.org/.
[25] U. A. Acar, G. E. Blelloch, and R. D. Blumofe, “The data locality of

work stealing,” in Proceedings of the 12th Annual ACM Symposium
on Parallel Algorithms and Architectures, ser. SPAA ’00, July 2000,
pp. 1–12.

[26] J. Hubička, A. Jaeger, M. Matz, and M. Mitchell, “System V
Application Binary Interface AMD64 Architecture Processor Sup-
plement,” https://software.intel.com/sites/default/files/article/
402129/mpx-linux64-abi.pdf, Oct. 2013.

[27] “Intel 64 and IA-32 Architectures Software Developers Manual
Volume 2,” Sept. 2016.

[28] “ARM Cortex-A Series Version: 1.0 Programmer’s Guide for
ARMv8-A,” Mar. 2015.

[29] “Power ISATM Version 2.07 B,” Jan. 2018.
[30] “Procedure Call Standard for the ARM 64-Bit Architecture,”

http://infocenter.arm.com/help/topic/com.arm.doc.ihi0055b/
IHI0055B aapcs64.pdf, May 2013.

[31] “64-Bit ELF V2 ABI Specification Power Architecture Workgroup
Specification Revision 1.4,” http://openpowerfoundation.org/
wp-content/uploads/resources/leabi/leabi-20170510.pdf, May
2017.

[32] D. L. Eager and J. Jahorjan, “Chores: Enhanced run-time support
for shared-memory parallel computing,” ACM Transactions on
Computer Systems, vol. 11, no. 1, pp. 1–32, Feb. 1993.

[33] K.-F. Faxén, “Wool – A work stealing library,” ACM SIGARCH
Computer Architecture News, vol. 36, no. 5, pp. 93–100, June 2009.

[34] C. S. Zakian, T. A. Zakian, A. Kulkarni, B. Chamith, and R. R.
Newton, “Concurrent Cilk: Lazy promotion from tasks to threads
in C/C++,” in Revised Selected Papers of the 28th International
Workshop on Languages and Compilers for Parallel Computing - Volume
9519, ser. LCPC ’15, Sept. 2016, pp. 73–90.

[35] S. Browne, J. Dongarra, N. Garner, G. Ho, and P. Mucci, “A
portable programming interface for performance evaluation on
modern processors,” International Journal of High Performance Com-
puting Applications, vol. 14, no. 3, pp. 189–204, Aug. 2000.

[36] S. C. Goldstein, K. E. Schauser, and D. E. Culler, “Lazy Threads:
Implementing a fast parallel call,” Journal of Parallel and Distributed
Computing, vol. 37, no. 1, pp. 5–20, Aug. 1996.

[37] K. Taura and A. Yonezawa, “Fine-grain multithreading with mini-
mal compiler support - a cost effective approach to implementing
efficient multithreading languages,” in Proceedings of the ACM
SIGPLAN 1997 Conference on Programming Language Design and
Implementation, ser. PLDI ’97, June 1997, pp. 320–333.

[38] K. Taura, K. Tabata, and A. Yonezawa, “StackThreads/MP: Inte-
grating futures into calling standards,” in Proceedings of the Seventh
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP ’99, May 1999, pp. 60–71.

[39] C. Yang and J. Mellor-Crummey, “A practical solution to the cactus
stack problem,” in Proceedings of the 28th ACM Symposium on
Parallelism in Algorithms and Architectures, ser. SPAA ’16, July 2016,
pp. 61–70.

[40] Y. Guo, R. Barik, R. Raman, and V. Sarkar, “Work-first and help-
first scheduling policies for async-finish task parallelism,” in Pro-
ceedings of the 2009 IEEE International Symposium on Parallel and
Distributed Processing, ser. IPDPS ’09, May 2009, pp. 1–12.

[41] S. L. Olivier, A. K. Porterfield, K. B. Wheeler, M. Spiegel, and J. F.
Prins, “OpenMP task scheduling strategies for multicore NUMA
systems,” International Journal of High Performance Computing Ap-
plications, vol. 26, no. 2, pp. 110–124, May 2012.

[42] A. Huynh, D. Thain, M. Pericàs, and K. Taura, “DAGViz: A DAG
visualization tool for analyzing task-parallel program traces,” in
Proceedings of the Second Workshop on Visual Performance Analysis,
ser. VPA 15, Nov. 2015.

[43] OpenMP Architecture Review Board, “OpenMP Application Pro-
gram Interface Version 5.0,” Nov. 2018.

[44] E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli,
X. Teruel, P. Unnikrishnan, and G. Zhang, “The design of OpenMP
tasks,” IEEE Transactions on Parallel and Distributed Systems, vol. 20,
no. 3, pp. 404–418, Mar. 2009.

[45] J. Schuchart, K. Tsugane, J. Gracia, and M. Sato, “The impact of
taskyield on the design of tasks communicating through MPI,”
in Proceedings of the 13th International Workshop on OpenMP, ser.
IWOMP ’18, Sept. 2018, pp. 3–17.

[46] P. E. Hadjidoukas and V. V. Dimakopoulos, “Support and effi-
ciency of nested parallelism in OpenMP implementations,” Con-
current and Parallel Computing: Theory, Implementation and Applica-
tions, pp. 185–204, 2008.

17

[47] F. Broquedis, N. Furmento, B. Goglin, P.-A. Wacrenier, and
R. Namyst, “ForestGOMP: An efficient OpenMP environment for
NUMA architectures,” International Journal of Parallel Programming,
vol. 38, no. 5, pp. 418–439, Oct. 2010.

[48] R. Narayanan, B. Ozisikyilmaz, J. Zambreno, G. Memik, and
A. Choudhary, “MineBench: A benchmark suite for data mining
workloads,” in Proceedings of 2006 IEEE International Symposium on
Workload Characterization, ser. IISWC ’06, Oct. 2006, pp. 182–188.

[49] M. Chabbi, M. Fagan, and J. Mellor-Crummey, “High performance
locks for multi-level NUMA systems,” in Proceedings of the 20th
ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, ser. PPoPP ’15, Feb. 2015, pp. 215–226.

[50] S. Iwasaki, A. Amer, K. Taura, S. Seo, and P. Balaji, “BOLT:
Optimizing OpenMP parallel regions with user-level threads,” in
Proceedings of the 28th International Conference on Parallel Architec-
tures and Compilation Techniques, ser. PACT ’19, Sept. 2019, pp. 29–
42.

[51] KDD Cup 1999 Data. http://kdd.ics.uci.edu/databases/
kddcup99/kddcup99.html.

[52] R. Yokota and L. A. Barba, “A tuned and scalable fast multipole
method as a preeminent algorithm for exascale systems,” Int. J.
High Perform. Comput. Appl., vol. 26, no. 4, pp. 337–346, Nov. 2012.

[53] K. Taura, J. Nakashima, R. Yokota, and N. Maruyama, “A task
parallelism meets fast multipole methods,” in Proceedings of the
Third Workshop on Latest Advances in Scalable Algorithms for Large-
Scale Systems, ser. ScalA ’12, Nov. 2012, pp. 617–625.

[54] J. Ang, B. Barrett, K. Wheeler, and R. Murphy, “Introducing the
Graph 500,” Cray User Group (CUG), May 2010.

[55] A. Amer, H. Lu, P. Balaji, and S. Matsuoka, “Characterizing MPI
and hybrid MPI+Threads applications at scale: Case study with
BFS,” in Proceedings of the 15th IEEE/ACM International Symposium
on Cluster, Cloud and Grid Computing, ser. CCGrid ’15, May 2015,
pp. 1075–1083.

[56] H. Lu, S. Seo, and P. Balaji, “MPI+ULT: Overlapping communi-
cation and computation with user-level threads,” in Proceedings of
the 17th International Conference on High Performance Computing and
Communications, ser. HPCC ’15, Aug. 2015, pp. 444–454.

[57] T. Fukuoka, W. Endo, and K. Taura, “An efficient inter-node
communication system with lightweight-thread scheduling,” in
Proceedings of the 21st International Conference on High Performance
Computing and Communications, ser. HPCC ’19, Aug. 2019.

[58] MPICH — High-Performance Portable MPI. https://www.mpich.
org/.

[59] Q. Chen, M. Guo, and Z. Huang, “CATS: Cache aware task-
stealing based on online profiling in multi-socket multi-core ar-
chitectures,” in Proceedings of the 26th ACM International Conference
on Supercomputing, ser. ICS ’12, June 2012, p. 163172.

[60] A. Podobas, M. Brorsson, and K.-F. Faxén, “A comparative perfor-
mance study of common and popular task-centric programming
frameworks,” Concurrency and Computation: Practice and Experience,
vol. 27, no. 1, pp. 1–28, Jan. 2015.

[61] G. W. Price and D. K. Lowenthal, “A comparative analysis of
fine-grain threads packages,” Journal of Parallel and Distributed
Computing, vol. 63, no. 11, pp. 1050–1063, Nov. 2003.

[62] T. B. Schardl, W. S. Moses, and C. E. Leiserson, “Tapir: Embedding
fork-join parallelism into LLVMs intermediate representation,” in
Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, ser. PPoPP 17, Jan. 2017, p. 249265.

[63] “Intel® Cilk™ Plus Application Binary Interface Specifica-
tion,” https://www.cilkplus.org/sites/default/files/open
specifications/CilkPlusABI 1.1.pdf, Dec. 2011.

[64] C. E. Leiserson, “The Cilk++ concurrency platform,” in Proceedings
of the 46th Annual Design Automation Conference, ser. DAC ’09, July
2009, pp. 522–527.

[65] J. Reinders, Intel Threading Building Blocks: Outfitting C++ for Multi-
Core Processor Parallelism. O’Reilly Media, July 2007.

[66] K. Sivaramakrishnan, L. Ziarek, R. Prasad, and S. Jagannathan,
“Lightweight asynchrony using parasitic threads,” in Proceedings
of the Fifth ACM SIGPLAN Workshop on Declarative Aspects of
Multicore Programming, ser. DAMP ’10, Jan. 2010, pp. 63–72.

[67] T. Hiraishi, M. Yasugi, S. Umatani, and T. Yuasa, “Backtracking-
based load balancing,” in Proceedings of the 14th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, ser.
PPoPP ’09, Feb. 2009, pp. 55–64.

Shintaro Iwasaki is a Ph.D. candidate at the
University of Tokyo. He is also a predoctoral
appointee at Argonne National Laboratory. He
received his B.S. and M.S. degrees from the Uni-
versity of Tokyo in 2015 and 2017, respectively.
His research interests include parallel program-
ming languages, compiler optimizations, parallel
runtime systems, and scheduling techniques.

Abdelhalim Amer is an assistant computer sci-
entist in the Mathematics and Computer Science
Division at Argonne National Laboratory. His re-
search falls generally under the parallel and dis-
tributed computing landscape. More specifically,
his focus is on communication runtimes and their
interaction with threading models on massively
parallel systems.

Kenjiro Taura is a professor at the Department
of Information and Communication Engineering,
University of Tokyo. He received his B.S., M.S.,
and D.Sc. degrees from the University of Tokyo
in 1992, 1994, and 1997, respectively. His major
research interests are centered on parallel/dis-
tributed computing and programming languages.
His expertise includes efficient dynamic load bal-
ancing, parallel and distributed garbage collec-
tion, and parallel/distributed workflow systems.

Pavan Balaji holds appointments as a computer
scientist and group lead at Argonne National
Laboratory, where he leads the Programming
Models and Runtime Systems group. His re-
search interests include parallel programming
models and runtime systems for communication
and I/O on extreme-scale supercomputing sys-
tems, modern system architecture, cloud com-
puting systems, data-intensive computing, and
big-data sciences.

18

