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Demands for Lightweight Threads

• Increase of cores in a processor.

• Finer-grained parallelism is important to exploit modern CPUs.

• Lightweight threads are demanded.

CPU DB (http://cpudb.stanford.edu/)

Intel Xeon Phi (Knights Landing) 72 cores, 288 HWTs
(https://software.intel.com/en-us/articles/what-disclosures-has-intel-made-about-

knights-landing)

ARM ThunderX2 up to 32 cores, 128 HWTs
(https://www.servethehome.com/cavium-thunderx2-review-

benchmarks-real-arm-server-option/)

Frequency # of cores



User-Level Threads

• Numerous parallel systems adopt user-level threads (ULTs)

• Sometimes more than 100x faster than OS-level threads

(=kernel threads, e.g., Pthreads)

• Adopted as lightweight parallel units.

• Cilk, Intel TBB, CilkPlus, OmpSs (=Nanos), Qthreads, Intel/LLVM OpenMP,

Charm++ (=Converse), Filaments, MassiveThreads, Argobots and many

From each official webpage
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OS-Level Threads vs. User-Level Threads

• ULTs are 350x faster than Pthreads

We can create more ULTs.

• Dynamic load balancing

• Latency hiding (I/O & network)

Smaller

is better

1.9*105

5.1*102

> 350x

Full = LC, repeat creating 256 threads & joining all of them; no suspension. / pthread: 500 iterations & 10 warm-ups / Full, RtC: 5000 iterations & 100 warm-ups Average of 10 times execution / Intel Xeon Phi 7210  (KNL) 1 core / 1.3GHz (turbo-boost: off) / Compiler: icc 17.2.174 / Stack size : 16KB /  Error < 5% / Red Hat 4.8.5-16 / Huge page is enabled.

We used Argobots:

- http://www.argobots.org/

- https://github.com/pmodels/argobots

(e.g., irregular parallelism)

(e.g., latency-intensive applications)
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Two Opposite ULT Techniques

1. Fully-fledged thread (Full): fully capable ULTs (i.e.,  suspendable  )

• Full has larger overheads.

• Adopted by Cilk, CilkPlus, Nanos, Qthreads, MassiveThreads, Argobots, … 

2. Run-to-completion thread (RtC): ultimately lightweight ULTs

• RtC cannot suspend.

• Adopted by Filaments, Qthreads, Intel TBB, Argobots, …

5.1*102

3.6*102> 1.4x

Smaller

is better



Suspension: Use Cases

• Suspension: save the thread context, and switch to another thread

(similar to pthread_yield())

• Suspension is used to efficiently utilize compute resources.

1. Waiting for a lock (mutex, critical section).

2. Waiting for I/O or communication.

3. Waiting for completion of other threads

Full can while RtC cannot.

CPU Core

Suspend!

Disk

File

Sync!
Network

MPI



Costs of Suspension Capability

• If a ULT never suspends,

RtC is faster than Full.

• Full has additional threading

overheads on fork/join to prepare

context switching.

• Suspension demand is application-dependent.

• Case: very few ULTs suspend (e.g., low resource contentions)

Describe later.
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Between Full and RtC: Dynamic Promotion

• Key idea: dynamic promotion from RtC to Full.

• All of them are applicable to building a threading library.

• Our contributions:

• In-depth analysis of full spectrum of user-level threading techniques.

• Two new techniques that do not exist in a past literature.

Most previous work evaluated whole packages,

not the individual methods.

• Our work investigates a ULT which is

• as fast as RtC if it does not suspend, but

• able to suspend as well as Full
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Fast

Performance

(suspension)

Slow

(Cannot Suspend)

Quick Overview

Full Yes (Eager) 2 ---

Change 

stack?

# of context 

switches 

(nonsuspension)

Constraints

Slow

RtC No 0 Not suspendableFast

Performance

(nonsuspension)

LSA
Yes

(Lazy)
2 ---

RoC
Yes

(Lazy)
1 ---

SS
Yes

(Lazy)
0

Scheduler must be 

stateless.

SC No 0
Scheduler must be 

stateless. Stack size is 

shared.

https://www.utep.edu/extendeduniversity/utepconnect/blog/march-2017/4-ways-to-differentiate-a-

good-source-from-a-bad-source.html

Full: slow, but more capable

RtC: fast, but less capable

Faster!

Stricter constraints!

Slow

LSA
Yes

(Lazy)
2 ---

RoC
Yes

(Lazy)
1 ---

SS
Yes

(Lazy)
0

Scheduler must be 

stateless.

SC No 0
Scheduler must be 

stateless. Stack size is 

shared.



Stack of parent()

Flow of Function Call

1. P(): call to child()

2. C(): push registers

3. C(): run a body of a function

4. C(): pop registers

5. C(): return to parent()

Stack of parent()

Stack of child()

Stack of parent()

Stack of child()

Register values

Stack of parent()

Stack of child()

Register values

Stack of parent()

Stack of child()

Register values

Stack of parent()

void parent() {
...
child();
...

}

void child() {
[push registers.]
[...];
[pop registers.]

}

Stack
pointer



(Naïve) Function Context: Stack & Registers

• Function context = execution state of a function.

• Composed of register values and a function stack.

Stack of bar()

Stack of foo()

Stack of baz()

a: 5

b: 4

d: 8

www.mips.com

Stack
pointer

1. Write context to memo

2. Update the stack pointer

3. Update the hardware registers

4. Update the instruction pointer

1. Write context to memo

2. Update the stack pointer

3. Update the hardware registers

4. Update the instruction pointer

https://www.mips.com/


User-level Context Switch

• Switch from X() to Y()

1. X(): call ctxswitch()

2. X(): push registers

3. X(): save a X()’s stack pointer

4. X(): set a Y()’s pointer

5. Y(): pop registers

6. Y(): jump to a return address

Stack of X()
Stack of Y()

Stack of ctxswitch()

Register values

Stack of X()
Stack of Y()

Stack of ctxswitch()

Stack of ctxswitch()

Register values

Stack of X()
Stack of Y()

Stack of ctxswitch()

Register values Stack of ctxswitch()

Register values

Stack of X()
Stack of Y()

Stack of ctxswitch()

Register values Stack of ctxswitch()

Stack of X()
Stack of Y()

Stack of ctxswitch()

Register values

Stack
pointer

Heap:

X’s context: 0x????

Y’s context: 0xBC40

Heap:

X’s context: 0xAB10

Y’s context: 0xBC40

Heap:

X’s context: 0xAB10

Y’s context: 0xBC40



Core

OS-level thread 

• An execution stream (= a worker) is bound to a core.

• A scheduler is running on an execution stream.

• The scheduler has a loop to execute ULT in the pools.

Execution Model of ULTs
Parent-first

Execution stream (= worker)

Scheduler

Thread poolWant to suspend!

Finish!



Full : Nonsuspension Case
1. S(): call ctxswitch()

2. S(): push registers

3. S(): save a scheduler()’s
stack pointer

4. S(): set a work()‘s stack
pointer

5. S(): call work() 

6. T(): [… run a function body …]

7. T(): restore an scheduler()’s
stack pointer

8. S(): pop registers

9. S(): jump to a return address

“call”

“return”

Stack of scheduler()
Stack of work()

Stack of scheduler()
Stack of work()

Stack of ctxswitch()

Stack of scheduler()
Stack of work()

Stack of ctxswitch()

Register values

Stack of scheduler()
Stack of work()

Stack of ctxswitch()

Register values

Stack of scheduler()
Stack of work()

Stack of ctxswitch()

Register values

Stack of scheduler()
Stack of work()

Stack of ctxswitch()

Stack of scheduler()
Stack of work()

Heap:

scheduler’s context: 0x????

’s stack: 0x1280

Heap:

scheduler’s context: 0xAB80

’s stack: 0x1280

Heap:

scheduler’s context: 0xAB80

’s stack: 0x1280

Stack
pointer



RtC : Nonsuspension Case

• Ultimately, RtC is a function pointer and its argument.

• Schedulers can just call it

void scheduler() {
while (1) {
[take ULT from pool(s)]
resume ULT;
if (!ULT.finished)

[add ULT to a pool]
}

}

void scheduler() {
while (1) {
[take ULT from pool(s)]
call ULT.work(ULT.arg);

}
} RtC never suspends.



RtC Can’t Suspend

• Because registers, a stack pointer, and

an instruction pointer are unsaved,

we cannot resume scheduler().

void scheduler() {
while (1) {
[take ULT from pool(s)]
call work(arg);

}
}

Stack of scheduler()

Stack of ctxswitch()
Register values.

This part is necessary 

for suspension.

(Full)

Stack of 
scheduler()

Stack of work()
Call 

ctxswitch()



[Summary] Costs: Full vs. RtC

• RtC : 1 function call + scheduling

• Scheduling = thread pool operations + descriptor management … etc.

• Full : 1 function call + scheduling

+ 2 user-level context switches + stack management

1. When a ULT starts

2. When a ULT finishes.

When ULTs do not suspend

1st context switch (invoke a ULT) 2nd context switch (resume scheduler)

scheduler()
work()

scheduler()
work()
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• Analysis is based on a fork-join + yield benchmark:

• Create and join 128 threads

• S % of 128 ULTs suspend once

• We run it on Intel Xeon E5-2699 v3. 

Microbenchmark: fork-join+suspend

• Show dynamic promotion techniques from Full 

• Focus on the performance when threads do not suspend.

void body(void* arg) {
if ((intptr_t)arg == 1)

suspend();
}

HANDLE ts[128]
for (int i = 0; i < 128; i++)

create(body, suspend_flags[i], &ts[i]);
for (int i = 0; i < 128; i++)

join(ts[i]);

Join

ULT ULT

ULT ULT

ULT ULT

ULT ULT
…

128 ULTs

Create

Suspend



From Full to RtC

• Suspension probability (=S) = 

• Narrow the performance gap at S = 0%
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Costs of Fully Fledged ULTs (Full)

• Full: more cache misses because

all ULTs use different function stacks.

• Stacks are allocated when Full is created.

• RtC: small cache misses because they use

the same function stack.

• The scheduler’s stack is reused.

Stack of 
scheduler()

Stack of 1st 
work()

Stack of 
ctxswitch()

Stack of 2nd 
work()

Stack of 3rd 
work()

RtC:Full:
Stack of 
scheduler()

Stack of 1st 
work()
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Lazy Stack Allocation (LSA)

• Lazy stack allocation (LSA): allocates stacks 

when ULTs are invoked, not created.

• If a ULT did not suspend, the next ULT uses

the same stack.

Stack of 
scheduler()

Stack of 1st 
work()

Stack of 
ctxswitch()

Stack of 2nd 
work()

Stack of 3rd 
work()

Full:

Stack of 
scheduler()

LSA:

Stack of 1st 
work()

Stack of 
ctxswitch

Stack of 2nd 
work()

Stack of 
ctxswitch

Stack of 3rd 
work()

Stack of 
ctxswitch()
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Full allocates a thread descriptor and stack at once, 

while LSA does separately. It degrades LSA’s 

performance when the suspension probability is high.



Costs of LSA : Two Context Switches

• Compared to RtC, # of instructions is quite large.

• Costly part: user-level context switches (=stack and register manipulation)
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Breakdown of create() Breakdown of join()

Common includes overheads of schedulers, thread pool 

operations, and memory management of thread descriptors.

Smaller

is better



Return-on-Completion (RoC)
• The first context switch is necessary to save 

the scheduler’s context.

• Needed for the future resume.

• The second context switch can be replaced by 

return if it just jumps to the parent

if the ULT never suspends.

• An assembly-level trick enables it.

• If the ULT suspends, is called at 

the end of .

• Return-on-completion (RoC)

Stack of 

scheduler() Stack of    

work()

Stack of 

ctxswitch()

(*) In general, a caller cannot be resumed by “return” because 

user-level context switch does not follow a standard ABI.

RoC

Stack of 

scheduler()
Stack of

work()

Stack of 
ctxswitch()

Full & LSA



RoC: Performance
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• RoC successfully reduces # of 

instructions.

• Good performance when the 

suspension probability is low.

Breakdown of create() Breakdown of join()
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Costs of RoC : One Context Switch

• Compared to RtC, # of instructions 

of RoC is still large.

• Caused by the first user-level 

context switch and the stack 

management. 

• They are necessary

to resume a parent ULT.

• What if we can restart a scheduler

instead of resuming it?
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common ctx_switch_RoC

full context switch lazy stack allocation

get_sched_context

ctx_switch_RoC includes one context switch.

Stack of 

scheduler() Stack of

work()

Stack of 

ctxswitch()

Breakdown of join()

This part:



Scheduler Creation (SC)

• Assume schedulers are running on ULTs.

• If the scheduler is stateless, we can freshly 

start a scheduler on the new ULT.

• The context of the original scheduler is 

abandoned.

• It has been previously proposed [*] - [***].

• Let’s call scheduler creation (SC).

It has almost the same execution flow of RtC.

Stack of 

scheduler()

Stack of work()

[***] D. L. Eager and J. Jahorjan. Chores: Enhanced run-time support for shared-memory parallel computing. TOCS. 1993

[***] K.-F. Faxén. Wool - A work stealing library. SIGARCH Comput. Archit. News, 2009.

[***] C. S. Zakian, T. A. Zakian, A. Kulkarni, B. Chamith, and R. R. Newton. Concurrent Cilk: Lazy promotion from tasks to threads in C/C++.  LCPC ’15, 2016

Call Return

Stack of new

scheduler()

Suspend!



Performance of SC

• SC performs as well as RtC

when S = 0%.
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Constraints of SC

1. The scheduler must be stateless.

2. Stack size of schedulers and ULTs

must be shared.

• e.g., an application has multiple types of work

each of which requires different stack size.

• Remove the 2nd constraint by using different

stacks.

Stack of 
scheduler()

Necessary 

stack for
work1()

Individual ULTs cannot specify the size of stacks

Need to use largest size!

Stack of 
scheduler()

Necessary 

stack for
work2()

Stack of 
scheduler()

Necessary 

stack for 
work3()



Stack Separation (SS)

• Stack separation (SS): it does not save register values of the scheduler, but 

uses different stacks.

• Because the context of the parent scheduler is not fully saved,

the scheduler must be stateless.

• When work() suspends, it renews

the scheduler()’s stack and

calls scheduler() over the original stack.
Stack of work()

Stack of 

scheduler()
Call 

Suspend!
Stack of 

scheduler()

Stack of work()

SC
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Performance of SS

• SS shows slightly worse

performance than SC.

Because of additional 

instructions!

+ 14 insts.
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Constraints of SS

1. The scheduler (or in general, the parent function) must be stateless.

2. Stack size of schedulers and ULTs

must be shared.

• Stacks are not shared!

= 1st constraint of SC.

Stack of work()

Suspension

Stack of 

scheduler()

The different stack is used for a ULT.



Summary

• Typical trade-off relationship.

• Performance at S=0% and performance at S=100%.

• SS, SC, and RtC have additional constraints.

S=0% Case (No suspension) S=100% Case

Constraints
Change 
Stack?

# of ctx
switches Overhead

Rerun 
sched.? Overhead

Full Yes 2 High No Low No
LSA Yes 2 No No
RoC Yes 1 No No
SS Yes 0 Yes *
SC No 0 Yes High **
RtC No 0 Low - - ***

*** Schedulers must be stateless.

*** Schedulers must be stateless. Stack size of schedulers and ULTs is shared.

*** Threads are unable to yield.

0

100

200

300

400

0% 20% 40% 60% 80% 100%

C
y
c
le

s
 p

e
r 

fo
rk

-j
o
in

Suspension probability (S)
Full LSA RoC
SS SC RtC



Index

1. Introduction : Lightweight threads

2. Background : How ULTs work

3. Analysis & Proposals

4. Evaluation

5. Conclusions



Three Motivating Cases
1. Waiting for mutexes.

• KMeans: simple machine learning algorithm.

ULTs access shared arrays with locks.

2. Waiting for completion of other threads

• ExaFMM: divide-and-conquer O(N) N-Body solver.

Parent ULTs need to wait for children.

3. Waiting for communication.

• Graph500: fine-grained MPI program

ULTs conditionally call MPI functions.

Sync!

Network

MPI



1. ExaFMM: Recursive Parallelism

• ExaFMM: Optimized O(N) N-body solver.

• Parent ULTs need to suspend if child ULTs do not finish at .

• However,                      never suspend since they do not join.

• Suspension rarely happens       dynamic promotion techniques should perform better!

thread4 thread5

thread7 thread8 thread9thread3

thread6thread1

thread2

leaf ULTs



1. ExaFMM: Performance

• Keep “# of ULTs / worker” for load balancing and increase # of workers

on KNL (64 cores)

• Performance: Full < LSA < RoC < SS, SC
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2. Graph500: Latency Hiding
• MPI_MULTIPLE_THREADS on ULT-Aware MPI : one process per node

• Fine-grained Graph500: graph traversal on multiple nodes.

• One ULT deals with one update vertex.

: owned by a local rank (= 2) (processed by multiple workers) 

Send buffer (to rank 0)

Send buffer (to rank 1)

Send buffer (to rank 3)

send to compute 
node 0

Worker-local buffers.

ULT 1

ULT 2

ULT 3 1

ULT 3 6 2

2

Omit the explanation on the receiver side.

Only when the buffer is full, ULTs can suspend in MPI calls.

If send buffer is large, only few ULTs suspend!



2. Graph500 : Performance
• 16 KNLs (1K cores in total) + Omni-Path (MPICH3.2.x + CH3 OFI1.4.0 + PSM2)

• The send buffer size is changed.

• Performance: Full < LSA < RoC, SS, SC

0.0E+0

5.0E+7

1.0E+8

1.5E+8

2.0E+8

2.5E+8

T
E

P
S

 [
#

 o
f 
tr

a
v
e

rs
e

d
 e

d
g

e
s
 /

 s
]

Buffer length (# of vertices)

Full LSA RoC SS SC

Dynamic promotion performs better.

Larger

is better

0%

2%

4%

6%

8%

10%

12%

S
u

s
p

e
n

s
io

n
 p

ro
b

a
b

ili
ty

 (
S

)

Buffer length (# of vertices)

When S is high, Full might perform better. 

However, threading overheads are 

negligible because of other performance 

issues causing suspension

• High resource contention

25%



Conclusion: Lessons Learned from Analysis

• Trade-off between S=0% performance and functionality

• Trade-off between S=0% and S=100% performance

• RoC shows a good trade-off

• Full threading capability + good S=0% performance

Nonsuspension Case Suspension Case

Constraints
Change 
Stack?

# of ctx
switches Overhead

Rerun 
sched.? Overhead

Full Yes 2 High No Low No
LSA Yes 2 No No
RoC Yes 1 No No
SS Yes 0 Yes *
SC No 0 Yes High **
RtC No 0 Low - - ***

*** Schedulers must be stateless.

*** Schedulers must be stateless. Stack size of schedulers and ULTs is shared.

*** Threads are unable to yield.
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Future Work

1. Automatic selection of those techniques

• Runtime selection based on profiling?

2. Investigating overheads of other factors

• Scheduling policy, memory allocators, thread pools…

3. Higher-level runtime systems

• Apply those techniques to OpenMP

• Can we simply apply our techniques?

• Do OpenMP parallel units have other fundamental overheads?
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