
Lightweight Preemptive User-Level Threads
Shumpei Shiina

The University of Tokyo
Tokyo, Japan

shiina@eidos.ic.i.u-tokyo.ac.jp

Shintaro Iwasaki
Argonne National Laboratory

Lemont, Illinois, USA
siwasaki@anl.gov

Kenjiro Taura
The University of Tokyo

Tokyo, Japan
tau@eidos.ic.i.u-tokyo.ac.jp

Pavan Balaji
Argonne National Laboratory

Lemont, Illinois, USA
balaji@anl.gov

Abstract
Many-to-many mapping models for user- to kernel-level
threads (or “M:N threads”) have been extensively studied
for decades as a lightweight substitute for current Pthreads
implementations that provide a simple one-to-one mapping
(“1:1 threads”). M:N threads derive performance from their
ability to allow users to context switch between threads and
control their scheduling entirely in user space with no kernel
involvement. This same ability, however, causes M:N threads
to lose the kernel-provided ability of implicit OS preemption—
threads have to explicitly yield control for other threads to
be scheduled. Hence, programs over nonpreemptive M:N
threads can cause core starvation, loss of prioritization, and,
sometimes, deadlock unless programs are written to explic-
itly yield in proper places. This paper explores two tech-
niques for M:N threads to efficiently achieve implicit preemp-
tion similar to 1:1 threads: signal-yield and KLT-switching.
Overheads of these techniques, with our optimizations, can
be less than 1% compared with nonpreemptive M:N threads.
Our evaluation with three applications demonstrates that
our preemption techniques for M:N threads improve core
utilization and enhance the performance by utilizing light-
weight context switching and flexible scheduling of M:N
threads.

CCS Concepts: • Computing methodologies→ Shared
memory algorithms.

Keywords: preemption, multithreading, user-level threads,
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1 Introduction
Many-to-many thread mapping models (“M:N threads”)—
where “M” user-level threads (ULTs) that are visible to the ap-
plication programmer aremapped to “N” kernel-level threads
(KLTs) that are managed by the OS—have been an area of
active research for the past several decades. Several imple-
mentations of M:N threads have been proposed during this
time [13, 14, 18, 32, 39, 49, 55]. This is in contrast to the
simple one-to-one mapping model that current Pthreads im-
plementations use (“1:1 threads”). The many-to-many map-
ping model used by M:N threads allows them to perform
context switching and scheduling almost entirely in user
space with no kernel involvement. This capability is the
source of the high performance that most M:N thread imple-
mentations can achieve. In fact, modern M:N thread imple-
mentations such as Argobots [29, 30, 49], Qthreads [55], and
MassiveThreads [39] can achieve several orders of magnitude
lower overhead compared with current implementations of
Pthreads, thus allowing for more fine-grained parallelism
and schedulers optimized for it [8].

As beneficial as the kernel-bypass feature of M:N threads
is, however, it has its own shortcomings. In particular, by-
passing the kernel for scheduling and context switching
causes M:N threads to lose the kernel-provided ability of
implicit OS preemption. That is, M:N threads have to explic-
itly yield control for other threads to be scheduled. Since
scheduling of M:N threads happens only at explicit schedul-
ing points, programs that do not call scheduling operations
in a timely manner cause M:N threads to occupy cores for
a long time, resulting in load imbalance or loss of thread
prioritization. Programs can even deadlock if nonpreemptive
M:N threads fall into a busy loop waiting for the progress of
other threads. Manually inserting explicit scheduling points
in proper places would be a solution but is often impractically
burdensome considering today’s complex applications built
on top of numerous dependent frameworks and libraries.
Closed-source software exacerbates this situation since users
cannot rewrite their implementations. Lack of implicit OS
preemption narrows the applicability of M:N threads.

https://doi.org/10.1145/3437801.3441610
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For simplicity, in the rest of the paper we will refer to
ULTs simply as “threads,” as is common practice in the lit-
erature. Kernel-level threads will be referred to as KLTs, to
clearly distinguish them from ULTs. As we mentioned, ULTs
can be implemented as either M:N threads or 1:1 threads.1
In fact, major thread specifications, including Pthreads [1]
and OpenMP [41], do not require a one-to-one mapping of
threads to KLTs.

In this paperwe investigate two techniques forM:N threads
to achieve implicit OS preemption similar to 1:1 threads:
signal-yield and KLT-switching. The first technique—signal-
yield—has been previously proposed [4, 9, 38] and also inte-
grated into the Go language [2, 17]. This technique preempts
a thread by interrupting the execution with a preset timer
signal and context switching from within the signal handler.
While this technique is simple, it is not directly applicable
to several real-world applications because of two reasons.

1. Timer signals are not scalable and can be expensive on
systems with large core counts. In this paper, we present
new optimizations to mitigate this overhead by coordinating
the signals across different KLTs.

2. Signal-yield requires user functions to be “KLT-
independent” and have the ability to execute correctly even
if the underlying KLT is switched dynamically during exe-
cution. This requirement, unfortunately, is highly restrictive
for many applications. For instance, the malloc() implemen-
tation in Glibc is KLT-dependent because it uses KLT-local
data.
Our second technique—KLT-switching—overcomes the

KLT-dependence issue in signal-yield by virtualizing the
concept of a KLT into what we call a “worker.” In other
words, “M” threads would be mapped to “N” workers, which
in turn would internally be mapped to a pool of “P” KLTs.
Like signal-yield, KLT-switching also preempts a thread by
interrupting the execution with a signal. Unlike signal-yield,
however, instead of context switching the thread fromwithin
the signal handler, the entire KLT is suspended, and the
worker is remapped to another KLT from the KLT pool. KLT-
switching incurs higher overhead than signal-yield does, but
it covers a wider range of applications. For consistency, we
will use the term “worker” for both signal-yield and KLT-
switching. In signal-yield, a worker would be equivalent to
a KLT (Figure 1a), while in KLT-switching there is no static
mapping between workers and KLTs (Figure 1b).
Both techniques involve kernel calls only for interrup-

tion; they require neither kernel modification (e.g., scheduler
activations [5]) nor compiler support to insert preemption
points [6, 43] because they rely only on OS features pro-
vided by today’s mainstream OS implementations. Thus,

1We note that some literature uses the term “ULT” to denote M:N threads.
In order to clearly distinguish KLTs and ULTs, a ULT in this paper denotes
a thread visible to user programs. By definition, Pthreads and OpenMP
threads are ULTs, and their common implementations adopt 1:1 mapping.

 workers

 KLTs

 threads

(a) Nonpreemptive/signal-yield

 workers

 KLTs

 threads

(b) KLT-switching

Figure 1. Thread mapping to workers and KLTs in M:N
threads.

the overhead of our techniques is incurred only at inter-
ruption, which is less than 1% when the preemption inter-
val is 1 ms (OS preemption is typically in the millisecond
range). We note that our implementation allows combining
all three types of M:N threads within the same application:
traditional nonpreemptive threads, signal-yield threads, and
KLT-switching threads. Users can, therefore, further opti-
mize programs by spawning themost suitable type of threads
based on their needs for performance and threading features.
We evaluate three applications to evaluate the benefits

of preemptive M:N threads. We first demonstrate the appli-
cability of our preemption techniques with the Cholesky
decomposition kernel in SLATE [22], which has nested paral-
lelism and internally uses Intel MKL as a BLAS library. While
using nonpreemptive M:N threads, instead of Pthreads, can
improve the performance by reducing threading overheads
in nested parallelism, they are not reliable and can deadlock
in some cases. With our proposed preemptive M:N threads,
we can achieve up to 27% performance improvement over
Intel OpenMP but without deadlocks. The second evaluation
is with HPGMG-FV [3], a high-performance geometric multi-
grid application, under thread packing [15]. Core starvation
incurred by thread oversubscription under thread packing is
efficiently alleviated by designing a scheduler specialized for
thread packing, which outperforms traditional implemen-
tations that use 1:1 threads or nonpreemptive M:N threads.
Our evaluation of the LAMMPS [44, 47] molecular dynam-
ics application with in situ analysis shows that lightweight
preemptive threads can help with thread prioritization.

2 Background
Most traditional M:N thread implementations have not sup-
ported preemption. Thus, explicit yielding (also known as
“cooperative scheduling”) has been considered a fundamen-
tal feature of M:N threads. In this section, we first describe
the basic idea of M:N threads. We then discuss preemption
support for threads in both M:N and 1:1 models.

2.1 Overview of M:N Threads
M:N threads have been proposed as lightweight threads that
are implemented mostly with user-space operations. As with
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1:1 threads, M:N threads allow each thread to have its own
stack. In an M:N thread implementation, when a thread con-
text switches, the running thread’s stack pointer and regis-
ters are saved in a separate memory location, and the control
is handed back to the scheduler. The scheduler then picks
another thread to be scheduled (depending on scheduling
policy it uses), loads the new thread’s stack pointer and reg-
isters, and executes it—an approach that costs only about
one hundred cycles in total. User-level context switching is
key to efficiently implementing several threading operations
including fork, join, and yield. Users can develop their own
schedulers, thus allowing them to customize their schedul-
ing algorithm for specific workloads. Some parallel runtimes
also provide thread-like entities, called run-to-completion
threads or “tasks,” but these entities do not support generic
yield; tasks in Cilk [7, 21] and Intel TBB [46] have no con-
cept of yielding while tasks in LLVM/Intel OpenMP support
stack-based yield, which has highly restrictive scheduling
constraints [48]. This paper does not deal with tasks, but
only with threads.
While numerous M:N thread implementations exist, this

paper assumes the following threading model, which is com-
mon tomost such implementations. On initialization, the run-
time creates as many workers as the available cores, and each
worker has one KLT and one “scheduler thread.” The sched-
uler thread runs an infinite loop that tries to pop a thread
from its associated thread pools that store ready threads and
runs it by context switching. When a thread explicitly yields
or finishes its thread function, it switches to the scheduler
thread by context switching again.

2.2 Preemption for Threads
1:1 threads adopt both explicit and implicit yielding capabili-
ties. In a 1:1 thread implementation, threads can explicitly
call a yield function (such as sched_yield()) or use implicit
OS preemption if a thread does not yield for a “long time”
(an OS scheduler time slice). In either case, control is handed
back to the scheduler, which can then pick the next thread to
schedule based on priority or fairness metrics. On the other
hand, M:N threads are not preemptive. Context switching
between threads happens only at explicit scheduling points,
namely, when a thread explicitly calls yield or yield-like op-
erations (e.g., fork, join, or barrier) or when it completes.
Thus, if threads occupy cores for a long time without issuing
explicit scheduling operations, nonpreemptive M:N threads
can cause core starvation, loss of prioritization, and deadlock.
Most M:N threads are nonpreemptive since they cannot

count on the OS preemption functionality, which utilizes
hardware timer interruption, because M:N threads are not
visible from the OS. To realize preemption for M:N threads,
we have to control interruption to M:N threads from user
space, using some kernel interfaces provided by the OS. In
the next section, we describe how to interrupt the execution
of threads without kernel modification.

3 Designing Preemption for M:N Threads
This section presents the design, implementation, and de-
tailed analysis of two preemption techniques forM:N threads—
signal-yield and KLT-switching.

3.1 Preemption Techniques for M:N Threads
3.1.1 Signal-Yield. The first preemption technique that
we study in this paper—signal-yield—was proposed in [2, 4, 9,
38]. The central idea of signal-yield is that a running thread
can be interrupted by using OS timer signals, thus emulating
OS time slices. Once interrupted, the running thread will con-
text switch to the scheduler from within the signal handler.
Since the stack frame of the signal handler is located on top
of the running thread’s stack frame, the context switch saves
contexts for both the signal handler and the running thread.
When the thread is resumed, the execution context is still
in the signal handler; then the control exits from the signal
handler and returns to the thread’s context. We note that
some systems, including POSIX (by default), do not invoke
a signal handler while the previous signal handler associ-
ated with the same signal is unresolved. For signal-yield, this
would mean that only one thread can be preempted on each
worker. To avoid this issue, we unblock the signal for the
signal handler right before context switching from within
the signal handler. This strategy allows us to preempt as
many threads as needed within the same worker.
While signal-yield allows us to achieve OS time-slicing-

like preemption capability, it has two shortcomings.
1. Because calling a signal handler involves taking a lock

in the kernel, concurrent invocation of signal handlers on
multiple cores can cause severe lock contention. Thus, if
timer signals are issued at nearly the same time, some threads
will spend more time to handle signals. For systems with
large core counts this situation can cause significant over-
head. In Section 3.2 we will describe optimization techniques
to address this issue.

2. The signal-yield technique is relevant only for threads
that execute KLT-independent functionality, namely, func-
tions that can execute correctly even if the underlying KLT
is switched dynamically during execution. This, essentially,
restricts threads from using any KLT-local storage. Unfortu-
nately, using KLT-local storage is common practice in many
applications and libraries, making this a significant restric-
tion. For instance, the malloc() implementation in Glibc
uses KLT-local storage to save flags and cache data. If pre-
emption happens in a KLT-dependent function, the next
thread running on the same KLT may modify the KLT-local
data by, for example, calling the same function again.

3.1.2 KLT-Switching. Our second preemption technique—
KLT-switching—is designed to overcome the KLT-dependence
issue in signal-yield. The core idea of this technique is to
extend the concept of a worker so there is no static mapping
between workers and KLTs. While a thread is not preempted,
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(a) When a thread (thread1) is preempted and a
signal handler is called on it, it wakes up a KLT
(KLT2) in the KLT pool.
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KLT 2

KLT 3KLT 4

suspend
KLT 1

Thread 1 Sched

KLT Pool

Thread PoolThread 2 Thread 3

(b) The new KLT (KLT2) wakes up, and the pre-
empted thread (thread1) associates the previous
KLT (KLT1) with itself and suspends its execution.

Worker 1 Worker 2

KLT 3KLT 4

KLT 2

yield

KLT 1

Thread 1 Thread 2 Thread 3

Sched

KLT Pool

Thread Pool

(c) The woken-up KLT (KLT2) runs the scheduler
and puts the preempted thread (thread1) into the
thread pool as if it had called a yield function.

Figure 2. Illustration of KLT-switching when preemption happens.
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(a) The scheduler running on a KLT (KLT4) pops a
preempted thread (thread1) from the thread pool.

Worker 1 Worker 2

KLT 4wakeup

KLT 2

Thread 2

KLT 3

Thread 3

KLT 1

Thread 1
Sched

KLT Pool

Thread Pool

(b) The running KLT (KLT4) wakes up the KLT
(KLT1) associated with the preempted thread
(thread1).

Worker 1 Worker 2

KLT 4

sleep

KLT 2 KLT 3

KLT 1

Thread 1 Sched

Thread 2 Thread 3

KLT Pool

Thread Pool

(c) The preempted thread (thread1) resumes on the
same KLT (KLT1). The previous KLT (KLT4) exits
from the scheduler and sleeps in the KLT pool.

Figure 3. Illustration of KLT-switching when rescheduling a preempted thread.

it works as a normal M:N thread does. When a thread is
preempted, however, the suspended thread temporarily gets
1:1 mapping to the underlying KLT of the worker. The as-
signed KLT is restricted from executing other threads, so
the KLT-local data remains unchanged until the suspended
thread resumes. We dynamically allocate additional KLTs
during suspension and remap the worker to a different KLT.

The overall working of KLT-switching is illustrated in Fig-
ure 2 (showing the suspend path) and Figure 3 (showing the
resume path). In this example, worker1 is initially mapped
to KLT1 and is executing thread1. When the time slice ex-
pires, thread1 receives a signal to suspend itself. At this point,
three actions are done: (1) a new KLT (KLT2) is allocated and
assigned to worker1; (2) the suspended thread (thread1) and
the KLT on which it was executing (KLT1) are both pushed
to the thread pool for later execution; and (3) the execution
context switches back to the scheduler, which will now exe-
cute on the newly allocated KLT2. Similarly, when the thread
needs to be resumed, again three steps need to be done: (1)
the thread (thread1) and its corresponding KLT (KLT1) are
popped back from the thread pool by the scheduler; (2) the
execution context switches to thread1; and (3) the KLT on
which the scheduler was executing (KLT4) is returned to the
KLT pool. We note that even though the KLT pool can have
more KLTs than the number of cores, not all of them are
active at the same time. In fact, we keep active only as many
KLTs as there are cores available.

An interesting detail to note is that KLT-switching needs
a special mechanism to create KLTs. To allocate a new KLT
upon preemption, the worker first checks the KLT pool to
see whether any unused KLTs are available. If no unused
KLTs are available, a new KLT will need to be created. Un-
fortunately, we cannot simply create new KLTs inside a
signal handler because most KLT-creation functions (such
as pthread_create()) are not async-signal-safe; in other
words, they cannot be called from within signal handlers [1].
To work around this issue, we delegate the creation of KLTs
to a dedicated KLT called “KLT creator.” When a new KLT
needs to be created, we send a request to the KLT creator,
which then creates a KLT and adds it to the KLT pool.

Another interesting detail to note is that once a request
is sent to the KLT creator, the signal handler cannot wait
for the completion of the KLT creation. The reason is that
the KLT creation function itself might try to acquire a global
lock, which would cause a deadlock if the preempted thread
had already taken the lock. Therefore, the running thread
must exit from the signal handler and wait for the next signal
interruption to check whether a new KLT is available. When
the running thread receives its next signal interruption, how-
ever, the newly created KLT may have gotten assigned to
another worker. In that case, it would have to issue another
request for a new KLT creation and go through the same
cycle again. We note that while this situation may cause
delay in some cases, there is no risk of livelock because, in
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Figure 5. Illustration of optimized preemption timers. A timeline of
six workers is shown; the rectangles represent interruptions.

the worst case, we would allocate as many KLTs as threads,
thus simply deteriorating to a 1:1 threading model.

3.2 Optimizations for Preemption Timers
Both signal-yield and KLT-switching require a preemption
timer to periodically send a signal to the running thread in or-
der to force implicit preemption on preemptive threads. This
is accomplished by using the timer_create() function. We
consider two approaches to implement preemption timers:
per-worker and per-process. With a per-worker timer, every
worker has its own OS timer. In contrast, with a per-process
timer, all workers in the process share one OS timer: one
worker receives the signal and forwards it to other workers.

3.2.1 Per-Worker Timer. A naive implementation of a
per-worker timer in which the timer of each worker is set in-
dependently (e.g., on worker creation) does not scale well on
systems with large core counts. Figure 4 shows the average
time spent in a timer interrupt when all workers are inter-
rupted every 1 ms. The plot shows an average of 1,000 inter-
rupts with standard deviations. System settings are described
in Section 4. The naive implementation (Per-worker (creation-
time)) shows poor scalability, taking as much as 100 𝜇s for
large core counts (in contrast, thread context switching for
M:N threads costs tens of nanoseconds). This behavior is
because of signal contention. In Linux, calling a signal han-
dler involves taking a lock in the kernel, thus causing lock
contention when multiple signals are issued at the same time.

To avoid such signal contention, we propose an approach
called “timer alignment,” where the timer interrupts across
the different workers are explicitly aligned in order not to
overlap (see Figure 5a). This ensures that the signal han-
dling cost does not increase with increasing core counts
(Per-worker (aligned) in Figure 4).

Nevertheless, per-worker timers have two shortcomings.

1. They are not portable. The feature of sending periodic
timer signals to a specific KLT is not a part of the POSIX
specification, although it is implemented in Linux.

2. They do not distinguish between workers that have
preemptive threads and workers that do not. Consider an
application that has both preemptive and nonpreemptive

threads: the per-worker timer would signal all workers, even
if none of the currently running threads are preemptive, thus
adding overhead with no benefit.

3.2.2 Per-Process Timer. To overcome the shortcomings
in per-worker timers, we investigate “per-process timers” as
an alternative signaling technique. In this technique, only
one worker receives the periodic timer signal from the OS. It
then checks whether the running thread on another worker
is preemptive, and only if it is preemptive does it send a new
signal to that worker by pthread_kill(). It repeats this
procedure for the remaining workers. If none of the running
threads are preemptive, no additional signals are issued.
While per-process timers can significantly reduce signal

overhead in cases where there are few preemptive threads,
they are not particularly beneficial when most threads are
preemptive. In fact, as shown in Figure 4 (Per-process (one-to-
all)), the average interruption time continues to scale linearly
when all threads are preemptive, taking tens of microseconds
for large core counts. The reason for this increase is also
signal contention because issuing a pthread_kill() call is
much cheaper than signal handling. Hence, all workers try
to process their received signals at nearly the same time,
thus causing contention.
To avoid this signal contention, we propose a new opti-

mization to per-process timers, called “chained signals.” In
this optimization, the worker that received the timer inter-
rupt handles the signal and then issues a signal to at most one
other worker, depending on which worker has a preemptive
thread running. That worker in turn handles the received
signal and again forwards the signal to at most one other
worker. Thus, the workers are interrupted one by one like
a chain reaction (see Figure 5b). As shown in Figure 4 (Per-
process (chain)), this optimization can significantly improve
the average interruption time. We note that the performance
of Per-process (chain) is slightly worse than that of Per-worker
(aligned) because of the additional pthread_kill() calls, in-
dicating that per-worker timers are preferable when it is
known that most threads are preemptive.
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Figure 6. Relative overhead of preemptive M:N threads com-
pared with nonpreemptive M:N threads over a compute-
intensive benchmark. A per-worker timer is used.

3.3 Optimizations for KLT-Switching
While signal-yield is a low overhead preemption technique,
as described in Section 3.1.1, it is relevant only for threads
that execute KLT-independent functionality. KLT-switching,
on the other hand, is a more generally applicable technique,
although it can be more expensive than signal-yield. In this
section, we analyze the performance of KLT-switching and
present several optimizations to minimize its overhead.
Figure 6 compares the overhead of KLT-switching with

that of signal-yield with a compute-intensive microbench-
mark in which each of 56 workers runs ten threads that just
consume CPU cycles in a loop. In this experiment we use
the optimized per-worker timer. Experimental environments
of Skylake and KNL are summarized in Table 2 in Section 4.
Based on the experimental data, we note that the overhead
of signal-yield is virtually identical to that of a pure timer
interrupt (Timer interruption only). In other words, signal-
yield does not add any additional overhead compared with
that of the basic timer signal. We also note that a naive im-
plementation of KLT-switching can add significant overhead
compared with that of signal-yield.

3.3.1 Suspending and Resuming KLTs. Since we per-
form KLT-switching in a signal handler, suspending and
resuming KLTs require using async-signal-safe functionality,
which restricts usable functions in practice. A portable im-
plementation of such functionality could use sigsuspend()
to suspend a KLT at preemption and pthread_kill() to
resume a KLT because both calls are async-signal-safe. While
correct and portable, sigsuspend() involves additional sig-
nal handling, which leads to high overhead.
In this optimization, we replace the sigsuspend() and

pthread_kill() calls with a futex-based suspend/resume
implementation. Specifically, once a running thread receives
a signal, it simply suspends its underlying KLT on a futex
variable. When the KLT needs to be resumed, the resuming
thread would simply wake up the suspended KLT with a
FUTEX_WAKE operation. We note that futex is Linux-specific,

Table 1. Overhead of preemption

1:1 threads (Pthreads) Signal-yield KLT-switching
Skylake 2.8 𝜇s 3.5 𝜇s 9.9 𝜇s
KNL 15 𝜇s 18 𝜇s 62 𝜇s

but other OSs provide similar functionality. As shown in Fig-
ure 6, KLT-switching (futex) can reduce the overhead of KLT-
switching somewhat, but the overhead is still non-negligible.

3.3.2 Worker-local KLT Pool. Section 3.1.2 describes a
model where KLTs are allocated and cached in a global pool.
While this model reduces the average cost of KLT allocation,
using a global pool can hurt data locality when the KLTs get
resumed on different cores. In addition, in cases where we
enable binding of workers to specific cores for performance,
whenever a KLT is mapped to a different worker, that KLT’s
affinity needs to be reset. This can be expensive. To allevi-
ate these overheads, we introduce “worker-local KLT pools,”
where, together with the global pool, each worker also main-
tains its own local pool. This optimization further reduces
the overhead of KLT-switching, as shown in Figure 6.
Our two optimizations together achieve approximately

two times performance improvement, bringing KLT-switching’s
overheads within a range comparable to that of signal-yield.
When the timer interval is short, KLT-switching can still add
significant overhead; but once the timer interval is in the mil-
lisecond range, its overhead is less than 1% on Skylake. On
KNL the overhead of preemption is relatively large because
of its less powerful CPU architecture; to make the overheads
less than 1%, we need to set about 10 ms as an interval.
We note that even with all the optimizations above, im-

plicit preemption of M:N threads is costlier than that of 1:1
threads. Table 1 shows the median of preemption overheads
obtained by repeating preemptions 1,000 times. We set the
preemption interval to 10 ms, which is almost the same as
the OS preemption interval in our system. The result shows
that, on both Skylake and KNL, overheads of signal-yield
and KLT-switching are approximately 1.2x and 4x higher
than that of 1:1 threads, respectively. The merit of preemp-
tive M:N threads is a combination of implicit preemption,
scheduling flexibility, and other lightweight threading op-
erations such as fork-join operations and synchronization
primitives. Section 4 shows how preemptive M:N threads
can take advantage of the preemption capability.

3.4 Choice of Thread Types
As mentioned earlier, our implementation allows three types
of M:N threads to coexist within a single application: tra-
ditional nonpreemptive threads, signal-yield threads, and
KLT-switching threads. We have a few recommendations
on which thread type to choose. First, if a thread function
requires no preemption or has explicit yield calls, we rec-
ommend using nonpreemptive threads because they are the
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most efficient. If preemption is needed and users know that
the target thread function never calls a KLT-dependent func-
tion, signal-yield is recommended because, as shown in Fig-
ure 6, the overhead of signal-yield is smaller than that of
KLT-switching. If preemption is necessary and the thread
function contains a KLT-dependent function, KLT-switching
should be chosen. If users do not know what a thread func-
tion does (e.g., when replacing Pthreads with M:N threads in
an existing large program), we recommend KLT-switching
for correct execution.

3.5 Safe Use of Preemptive M:N Threads
Although preemptive M:N threads work similarly to 1:1
threads, they have some programming constraints.

3.5.1 SystemCalls and Signals. Unlike interruptions gen-
erated by a kernel, some system calls fail if a signal handler
is triggered while executing them. We can resolve this prob-
lem by automatically restarting system calls by setting the
SA_RESTART flag for the timer signal in sigaction(). But
some system calls cannot be restarted automatically, and
appropriate error handling is required. Moreover, users need
to be aware that too short a timer interval would cause many
restarts of system calls, which would affect the performance
of blocking system calls that take a long time, such as I/O.

3.5.2 Replacement of 1:1 Threads with Preemptive
M:NThreads. Implementing a complete substitute for exist-
ing 1:1 threads implementations (e.g., widely used Pthreads
implementations) with preemptiveM:N threads would signif-
icantly ease programmer effort in running existing applica-
tions overM:N threads. In reality, however, people use thread-
ing features beyond the pure specification of standardized
threads, so developing a wrapper for a certain thread pack-
age is insufficient. Arguably, our preemptive M:N threads
lack several nontrivial threading features. For example, on
some architectures, programs utilize a register value that is
unique to a thread (e.g., fs register on x86/64), so this value
must be properly maintained. Without compiler modifica-
tion, initialization of thread-local storage (TLS) would be
problematic since a compiler assumes TLS of KLT and thus
often relies on the initialization mechanism on KLT creation.
As discussed in Section 3.5.1, our signal-based preemption
affects some system calls, so this impact must be evaluated.
Investigating a complete replacement of current 1:1 thread
implementations is our future work.

3.5.3 Coexistence of Preemptive andNonpreemptive
Threads. Users must pay attention to how they manage
their lockswhen both preemptive and nonpreemptive threads
coexist in their application. If a preemptive thread is inter-
rupted while holding a lock and a nonpreemptive thread
scheduled later tries to take the same lock, a deadlock can
occur. Users should be particularly careful when third-party
functions use locks that are out of their control. For example,

Table 2. Experimental environment.

Name Skylake KNL
CPU Model Intel Xeon Platinum 8180M Intel Xeon Phi 7250
Frequency 2.5 GHz 1.4 GHz
# of Sockets 2 1
# of Cores 56 68
# of HWTs 112 (56 × 2) 272 (68 × 4)
L1 Data Cache 32 KB/core 32 KB/core
L2 Cache 1 MB/core 1 MB/2cores
L3 Cache 38.5 MB/socket -
Memory 396 GB 204 GB
OS (Kernel) Red Hat Linux 7.5 (3.10.0-862.14.4.el7)
Compiler Intel C/C++ compiler 19.0.4.243 (with the –O3 flag)

Glibc malloc() can take a global lock. Hence, preemptive
threads and nonpreemptive threads should not be mixed
unless one is sure that no lock is shared by both types of
threads. When in doubt, it is safer to rely on preemptive
threads instead of mixing thread types.

4 Evaluation and Analysis
In this section, we experimentally evaluate and analyze
the performance of preemption techniques for M:N threads
with three applications. Table 2 shows the experimental
environment used in this paper. In the following, we use
only Skylake for evaluation. Although our preemption tech-
niques are generic and applicable to other implementation
of M:N threads, we chose Argobots (v1.0rc1) [49] for evalu-
ation primarily because it has an OpenMP wrapper called
BOLT (v1.0rc3) [31]. For comparison we used Intel MPI for
inter-process communication and Intel OpenMP as a 1:1
thread implementation. To maximize the performance of In-
tel OpenMP, we tweaked its settings as follows. When more
threads than cores are created, we set 0 to KMP_BLOCKTIME
and disabled thread affinity; otherwise, KMP_BLOCKTIME and
OMP_PROC_BIND were set to 200 ms (the default value) and
true, respectively. We enabled nested hot teams [53] when
parallel regions are nested. We plotted the mean and the
standard deviation of 10 runs in the following evaluations. In
all experiments workers in Argobots were pinned to cores.

4.1 Deadlock Prevention in Cholesky Decomposition
OpenMP [41] is one of the most popular multithreading
programming models. Although most production runtimes
such as GCC, LLVM, and Intel OpenMP adopt 1:1 threads for
OpenMP threads, numerous papers have reported substan-
tial performance benefits from mapping OpenMP threads to
lightweight M:N threads [10, 12, 31, 36, 52]. ABI compatibil-
ity of such M:N thread-based implementations with major
OpenMP runtimes has also been studied [10, 12, 31]. Thus, in
theory, such M:N thread-based OpenMP libraries can run ex-
isting OpenMP applications without recompilation. In prac-
tice, however, a deadlock can occur when programs run on
nonpreemptive M:N thread-based OpenMP systems since
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Figure 7. Performance of Cholesky decomposition.

numerous OpenMP programs assume preemptive threads.
Preemptive M:N threads are expected to enhance the perfor-
mance without deadlocking.

To evaluate the performance, we focus on the Cholesky de-
composition kernel extracted from SLATE [22], a modernized
linear algebra library. This kernel uses an OpenMP backend
with nested parallelism. The outer parallelism uses OpenMP
tasks with data dependencies to decompose its computation
into operations of submatrices (tiles). Computation of each
tile calls BLAS routines including DGEMM, TRSM, HERK,
and POTRF in an external BLAS library, Intel MKL in our
case, in which the inner parallelism exists. OpenMP-parallel
Intel MKL, however, assumes implicit preemption during
thread synchronization by having threads busy-loop on a
memory flag, which causes a deadlock when running on non-
preemptive M:N threads. In our experiment, we fixed the tile
size to 1000× 1000 and changed the number of tiles. We used
BOLT, an Argobots-based OpenMP library that is fully ABI
compatible with LLVM OpenMP 9.0 [31]. We modified BOLT
to work together with KLT-switching and per-worker timers
for preemption. Our thread scheduler is based on BOLT’s
default work stealing [8] scheduler, in which each worker
prioritizes execution of threads in its own FIFO queue and
steals a thread from a randomly chosen remote queue when
its local queue is empty. Upon preemption, the scheduler
pushes the preempted thread into its local FIFO queue and
pops the next thread. This preemption mechanism guaran-
tees that all threads are scheduled within a finite time period,
preventing a deadlock caused by busy loops.
As a point of comparison, we reverse engineered the

closed-source Intel MKL library, by looking through its gen-
erated assembly code, to create a version of the code that
explicitly yields the thread while waiting for the flag to be
set, so it would work with nonpreemptive M:N threads too.
Obviously, such reverse engineering is a hack and is only
meant to demonstrate the best possible performance that
is achievable with nonpreemptive M:N threads. Such mod-
ification might not be possible for other applications and
does not cover all architectures or all MKL routines, but it is
sufficient for our experiment.

Figure 7 shows the results. IOMP (flat) shows the perfor-
mance of Intel OpenMP when inner parallelism is disabled
and the outer parallelism is set to the number of cores (56).
In all other cases, inner parallelism is enabled, and both
inner and outer parallelism are set to 8. In these settings,
nested parallel versions, including BOLT and Intel OpenMP,
perform better than the flat version because the outer paral-
lelism is not sufficient to make all cores active. In almost all
cases, BOLT with preemptive M:N threads outperforms In-
tel OpenMP thanks to the lightweight threading operations
in M:N threads [31]. In this application, larger timer inter-
vals achieve better performance because short preemption
intervals incur non-negligible cache misses.

4.2 Thread Packing with HPGMG-FV
OS schedulers designed for general purposes, such as com-
pletely fair scheduler (CFS) in Linux, do not perform well
for some workloads. We found performance degradation
caused by OS schedulers in thread packing [15, 16, 42], where
threads are dynamically packed into fewer cores for power
capping or resource partitioning.With 1:1 threads, CPU affin-
ity masks of threads are dynamically changed so that they
are executed on a limited set of cores. This causes significant
core starvation because of poor load balancing of OS sched-
ulers for parallel workloads [25, 28, 35]. Nevertheless, users
often do not have permission to change the scheduling algo-
rithm of OS schedulers on large-scale computing platforms.
Preemptive M:N threads are promising since their user-level
scheduling and preemption capability give chances to sched-
ule other threads for better load balancing at the preemption
interval.
In this evaluation, we demonstrate that preemptive M:N

threads with a user-level scheduler can minimize the perfor-
mance degradation caused by thread packing. To dynami-
cally change the number of active workers, our preemptive
M:N thread-based runtime dynamically wakes up workers
by signals or suspends workers upon preemption. Threads
that were executed by suspended workers will be executed
by the remaining active workers. Let us assume typical HPC
workloads where a fixed number of threads as many as cores
are created and the computation load is equally balanced
among the threads. Under thread packing, the key to good
load balancing is how to schedule extra threads that sus-
pended workers have in addition to local threads originally
assigned to currently active workers. The idea of our pro-
posed scheduler is to equally balance the load of extra threads
across all the active workers by prioritizing extra threads.
Preemption allows our runtime to schedule extra threads in
a round-robin fashion among active workers, slicing extra
threads by a preemption interval.

Algorithm 1 shows the pseudocode of the scheduler. Each
worker has a unique integer ID, called rank, within the range
[0, 𝑁𝑡𝑜𝑡𝑎𝑙 ), where 𝑁𝑡𝑜𝑡𝑎𝑙 denotes the initial number of work-
ers. Upon thread packing, workers with larger ranks are
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Algorithm 1 Scheduler specialized for thread packing
1: 𝑁𝑡𝑜𝑡𝑎𝑙 ← # of workers that are initially created
2: 𝑝𝑜𝑜𝑙𝑠 ← List of 𝑁𝑡𝑜𝑡𝑎𝑙 thread pools
3: 𝑟𝑎𝑛𝑘 ← Unique ID of this worker within the range [0, 𝑁𝑡𝑜𝑡𝑎𝑙 )
4: while true do
5: 𝑁𝑎𝑐𝑡𝑖𝑣𝑒 ← # of current active workers
6: 𝑁𝑝𝑟𝑖𝑣𝑎𝑡𝑒 ← 𝑁𝑎𝑐𝑡𝑖𝑣𝑒 × ⌊𝑁𝑡𝑜𝑡𝑎𝑙/𝑁𝑎𝑐𝑡𝑖𝑣𝑒 ⌋
7: for 𝑖 ← 𝑟𝑎𝑛𝑘 to 𝑁𝑝𝑟𝑖𝑣𝑎𝑡𝑒 step 𝑁𝑎𝑐𝑡𝑖𝑣𝑒 do
8: if 𝑡ℎ𝑟𝑒𝑎𝑑 ← 𝑝𝑜𝑝 (𝑝𝑜𝑜𝑙𝑠 [𝑖]) then
9: run(𝑡ℎ𝑟𝑒𝑎𝑑)
10: break
11: for 𝑖 ← 𝑁𝑝𝑟𝑖𝑣𝑎𝑡𝑒 + 1 to 𝑁𝑡𝑜𝑡𝑎𝑙 step 1 do
12: if 𝑡ℎ𝑟𝑒𝑎𝑑 ← 𝑝𝑜𝑝 (𝑝𝑜𝑜𝑙𝑠 [𝑖]) then
13: run(𝑡ℎ𝑟𝑒𝑎𝑑)
14: break

suspended. The scheduling algorithm consists of two phases:
scheduling of threads in private pools (lines 7–10) and shared
pools (lines 11–14). The private pools are exclusively as-
signed to a worker while the shared pools are shared by
all the active workers. Initially only the local pool of each
worker is private to the worker while no pools are shared.
Under thread packing, the shared pools include local pools of
suspended workers. Each worker repeats executing a thread
in one of its private pools (lines 7–10) and then a thread in
one of its shared pools (lines 11–14) alternately at the pre-
emption interval. Since the preemption interval is the same
among all workers, threads in the shared pools are sched-
uled in a round-robin fashion among all active workers, as
active workers peek the shared pools in turn. This strategy,
however, hurts data locality when fewer workers are active
because most threads are in the shared pools and scheduled
by different workers. To avoid this, when the number of
active workers (𝑁𝑎𝑐𝑡𝑖𝑣𝑒 ) becomes half of 𝑁𝑡𝑜𝑡𝑎𝑙 or less, we ex-
clusively assign more than one pool (𝑁𝑝𝑟𝑖𝑣𝑎𝑡𝑒 pools in line 6)
to the private pools of every active worker. Thus the number
of shared pools are always less than the number of workers,
which makes shared pools prioritized against private pools.
This achieves good load balancing for threads in the shared
pools while keeping good data locality for threads in the
private pools.

For evaluation, we chose the finite volume version of High
Performance Geometric Multigrid (HPGMG-FV) [3] (version
0.4), which solves linear equations using a full multigrid
method. We set eight as the log base 2 of the dimension
of each box on the finest grid and allocate eight boxes per
process. We created two MPI processes in a single node and
bound each process to a NUMA node for better locality. As
an M:N thread-based OpenMP runtime we used BOLT [31],
but we replaced the scheduler with the one we propose (Al-
gorithm 1). We used KLT-switching and per-worker timers
for preemption. For comparison to the OS scheduler, we also
evaluated the performance of Intel OpenMP (IOMP).
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Figure 8.Relative overhead of threading packing inHPGMG-
FV. The number of active cores per process is reduced from
28 to 𝑛 while creating 28 threads. The baseline is BOLT (non-
preemptive) when spawning 𝑛 threads from the beginning.
The baseline’s execution times to solve a linear equation are
shown as the bar plots.

Figure 8 shows performance evaluation of HPGMG-FV
when we first create 28 threads per process and reduce the
number of active cores from 28 to 𝑛 (x-axis) in each process.
It shows relative overheads compared to a baseline where
𝑛 threads are created from the beginning, together with the
absolute execution time of the baseline to solve a linear
equation. We arbitrarily chose the performance of BOLT
over nonpreemptive M:N threads as the baseline since Intel
OpenMP and BOLT showed almost the same performance.
For IOMP, we use taskset command to bind 28 threads to
𝑛 cores as done in [16], while for BOLT we suspend 28 − 𝑛
workers. The results show that the performance of IOMP is
far from the ideal performance especially when the number
of active cores is close to 28. This is because of inefficient load
balancing of CFS in Linux [25, 28, 35]. On the other hand,
the performance of preemptive BOLT is close to the ideal
one. It is interesting to note that 1 ms preemption interval
performs better than 10 ms; this result indicates that 10 ms
interval is insufficient to balance the load of extra threads
in this case. BOLT (nonpreemptive) shows good performance
when the number of cores is a divisor of 28, but in other
cases the performance is poor because, without preemption,
there are not enough scheduling chances for load balancing.
This evaluation shows the benefits of user-level scheduling
with preemptive M:N threads and configurable preemption
intervals.

4.3 In Situ Analysis with LAMMPS
Preemption gives more control over thread scheduling, en-
abling non-voluntary priority-based scheduling, for example.
With preemption, low-priority threads can be immediately
evicted in favor of high-priority threads even if low-priority
threads do not voluntarily yield. As a case study for priority-
based scheduling, we picked in situ analysis in LAMMPS,
where thread prioritization is favored.

LAMMPS [44, 47] is a molecular dynamics simulator devel-
oped by Sandia National Laboratories. For our experiments,
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Figure 9. Relative overhead of in situ analysis with LAMMPS
compared with simulation-only execution when the problem
size is changed on four Skylake nodes. The execution times
of simulation-only execution for 100 steps are shown as the
bar plots.

we used version stable_7Aug2019 together with the in situ
analysis discussed in [27]. We used the Kokkos [11, 20] pack-
age for shared-memory parallelism in the simulation code
and implemented an Argobots backend in Kokkos which
spawns asmany simulation threads as the number of workers
in every parallel region. The analysis code copies all atoms
to a separate buffer and performs analysis on this buffer in
parallel, while the simulation is going on, by spawning ded-
icated analysis threads. In the simulation, we calculate the
3D Lennard-Jones potential for 100 time steps.
Simulation threads have higher priority than analysis

threads have because analysis threads are created based on
the progress of simulation threads. Too eager scheduling
of analysis threads will delay the execution of simulation
threads, which can degrade the overall performance. Thus,
analysis threads should be executed only when no simula-
tion threads exist (e.g., during MPI communication). The
Pthreads version of the code achieves such prioritization by
setting a higher “niceness” (lower priority) to the analysis
threads than the simulation threads. The Argobots version of
the code achieves prioritization by having the scheduler first
check whether any simulation threads exist before check-
ing for analysis threads. Only analysis threads are set to be
preemptive, and every worker has a LIFO queue for analysis
threads in order not to hurt data locality during preemption.
We use signal-yield for preemption because the analysis
functions are KLT-independent. To minimize the overhead
of timer interruption for nonpreemptive simulation threads,
we use the per-process timer. The preemption timer interval
is fixed to 1 ms. We use four nodes, each of which has one
MPI process that consists of 56 workers.
Figure 9 shows the performance comparison of Pthreads

and Argobots (with and without prioritization) compared
with a baseline of a simulation-only (no analysis) execution.
Figure 9a shows the overhead when analysis is executed in
every iteration and Figure 9b shows the overhead when it is

executed every two iterations. In our experiments, we create
one less analysis thread than the available cores because the
main thread rarely becomes idle—it is either computing or
communicating; the remaining threads, on the other hand,
become idle when the simulation is going through sequential
portions of the code. For the Pthreads version of the code,
simulation threads are created by Intel OpenMP and analysis
threads are spawned via the Pthreads interface.

The result shows that Argobots-based execution achieves
better performance than Pthreads-based execution because
of its lower-overhead threading ability. Especially when the
total number of atoms is small, the improvement in perfor-
mance is significant. Prioritization helps both Pthreads- and
Argobots-based executions to reduce core idleness and im-
prove performance when the number of atoms is large. For
example, in Figure 9b, when the number of atoms is 5.6 × 107,
prioritization reduced 30% of the core idle time in the case of
Pthreads and 18% of the core idle time in the case of Argob-
ots. The impact of prioritization is more pronounced when
analysis is performed once every two iterations (Figure 9b)
compared with when analysis is performed in every iteration
(Figure 9a). This is because, when the analysis interval is 2,
the amount of analysis work is small enough to complete
while no simulation threads exist (e.g., during MPI commu-
nication). We note that, because nice values do not impose
strict scheduling order, the execution of the Pthreads-based
simulation is still uncoordinated. We could have further im-
proved performance by setting strict priority, for example, by
using real-time scheduling policies defined in POSIX, such as
SCHED_FIFO. However, these policies require root privilege
which is often unavailable to users. As a result, Argobots
with prioritization using preemptive threads performs the
best amongst all of the different approaches—this is the ver-
sion that is enabled by the work in this paper.

5 Related Work
Research on preemption support for M:N threads is not new.
In the early stages of threading support in operating systems,
many researchers investigated the interface design between
the kernel and user space to implement M:N threads. Dur-
ing this time, researchers investigated using mechanisms
to notify kernel events such as blocking and preemption
to M:N threads via a special KLT—they called this model
scheduler activation [5]. Another approach was proposed by
Marsh et al. as first-class user-level threads [37], in which
the kernel notifies events to the user space by using signals.
Nanothreads passes preemption events from the kernel to
the user space via shared memory between them [45]. So-
laris OS supported M:N threads; preemption was enabled by
using signals [50]. All of these studies required the kernel
to be aware of M:N threads. Unfortunately, modern main-
stream operating systems have abandoned such capabilities.
For example, Solaris OS moved to 1:1 threads from version
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9 because of the simple implementation of 1:1 threads [51].
As a result, most modern M:N thread-based parallel systems
lack preemption [13, 14, 18, 32, 39, 49, 55]. Our preemption
techniques for M:N threads work on today’s mainstream
operating systems that are unaware of M:N threads.

The signal-yield technique that was presented in this paper
has been previously investigated [4, 9, 38] and integrated into
the Go language [2, 17]. In the context of real-time systems,
Anantaraman et al. [4] studied signal-yield on single-core
systems, whereas Mollison and Anderson [38] extended it
to multicore processors. Mollison and Anderson also noted
in their paper that unsafe functions should be migrated to
“proxy threads” for safety. This recommendation is impracti-
cal since it requires modifying all KLT-dependent functions.
Boucher et al. [9] also pointed out this problem and proposed
a workaround for safely preempting the execution of exter-
nal libraries. Their method isolates external shared libraries
by loading multiple versions of shared libraries into differ-
ent linker namespaces and dynamically switching them by
modifying the global offset table (GOT). Their workaround,
however, imposes additional overheads to every call to ex-
ternal functions. Moreover, their method cannot deal with
the KLT-dependence issue when parallelism exists in exter-
nal libraries (e.g., Intel MKL). Our KLT-switching is the first
practical technique that tackles the KLT-dependence issue.
We also note that none of the past studies mentioned timer
optimizations, which is one of our contributions.
Techniques for virtualizing workers have also been stud-

ied, for example, in Concurrent Cilk [56]. These techniques,
however, are not designed for implicit preemption but for
explicit yield operations on run-to-completion threads or
“tasks.” This approach simplifies the design somewhat, be-
cause yielding no longer needs to be in the context of a signal
handler; but it also makes such previous work not applicable
to implicit preemption. User-level processes proposed by Hori
et al. [26] have a similar concept to KLT-switching to deal
with the system-call consistency issue (i.e., a user-level pro-
cess has to call system calls from the same KLT throughout
its execution), which is especially important for processes.
Their approach includes dynamically switching KLTs when
system calls are trapped so that system calls are always called
from the same KLT. Although this approach is similar to our
KLT-switching technique, preemption was not concerned in
their work.
Some researchers have proposed compiler-based tech-

niques for preemptive M:N threads. The general idea of these
approaches is that the compiler would insert explicit thread
scheduling points. This approach has been extensively stud-
ied in some Java virtual machine implementations [40, 54].
Unlike timer-based preemption, however, compiler-inserted
preemption points cannot be placed at arbitrary points in the
code and would depend on the application code structure.
Some studies [6, 43] have investigated the optimal frequency

of preemption points; frequent preemption points can de-
grade performance but incur less latency. To achieve more
precise timing of preemption at compilation time, Ghosh
et al. [23] proposed static estimation for execution time of
code blocks by calculating clock cycle latencies of instruc-
tions using LLVM [33]. Some work aiming at functional lan-
guages, such as Scheme, treats function entrances as sched-
uling points [19, 24]. It works effectively because function
languages usually rely on recursion to perform iterative op-
erations and do not have tight loops in a single function.
The Glasgow Haskell Compiler [34] uses an OS timer for
preemption, but rather than directly interrupting execution
by signals as our approach does, it performs preemption at
the explicit scheduling point right after timer expiration for
safety. All of these techniques rely on compiler support, and
most of them are specific to languages. Our techniques, on
the other hand, can be implemented in a threading library
and can therefore be easily deployed on most systems.

6 Concluding Remarks
Wehave investigated two lightweight preemption techniques
for M:N threads: signal-yield, a technique that is simple but
cannot run KLT-dependent functions, and KLT-switching, a
novel technique that addresses the issue of KLT-dependence.
These two techniques have different trade-offs: KLT-switching
covers a wider range of programs but has higher overheads
than does signal-yield. Our analysis shows that preemption
of M:N threads can be achieved with nearly no overhead
compared with nonpreemptive M:N threads and with high
scheduling flexibility. The results of our evaluation with real-
world applications are promising. Preemption can success-
fully improve the performance of nested OpenMP parallel
programs without incurring a deadlock, resolve load imbal-
ance under thread packing, and increase core utilization by
efficiently handling thread priority.
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A Artifact Appendix
A.1 Abstract
The artifact contains the source code of the runtime sys-
tems based on preemptive M:N threads (Argobots and BOLT)
and benchmarks for evaluation (several microbenchmarks,
Cholesky decomposition, HPGMG, and LAMMPS). This ap-
pendix section explains how to run the artifact, how to in-
terpret the experimental results, and how to customize the
experiments.

A.2 Artifact check-list (meta-information)
• Algorithm: Preemption techniques for M:N threads.
• Program: The parallel runtime systems used in our experi-

ments were implemented based on Argobots (v1.0rc1) and BOLT
(v1.0rc3). Application programs are Cholesky decomposition kernel
picked from SLATE (https://bitbucket.org/icl/slate/src), HPGMG
(version 0.4), and LAMMPS (stable_7Aug2019). All programs are
included in the artifact archive.
• Compilation: Intel C/C++ compilers. We used Intel C/C++

compiler 19.0.4.243 (with the –O3 flag) for our experiments.
• Run-time environment: Linux should be used for evalua-

tion. We used Red Hat Linux 7.5 (3.10.0-862.14.4.el7) in our experi-
ments. No root access is required.
• Hardware: Intel CPUs should be used. We used Intel Xeon

Platinum 8180M and Intel Xeon Phi 7250 for our experiments. Mul-
tiple nodes are preferable for the evaluation of LAMMPS.
• Output: Graph plots will be output as well as raw results

such as execution times.
• Experiments: See below.
• Howmuch time is needed to complete experiments (ap-

proximately)?: 2 hours.
• Publicly available?: Yes.
• Code licenses (if publicly available)?: The 2-Clause BSD

License. Note that only the pieces of the code of LAMMPS modified
for this paper are copyrighted under GNU General Public License
version 2.
• Archived (provide DOI)?: https://doi.org/10.5281/zenodo.

4420552

A.3 Description
A.3.1 How to access. The GitHub repository for the artifact is
https://github.com/s417-lama/ppopp21-preemption-artifact. The
Zenodo archive with a DOI can be downloaded from https://doi.
org/10.5281/zenodo.4420552.

A.3.2 Hardware dependencies. Intel CPUs should be used for
the evaluation of Cholesky decomposition because it has to use
Intel MKL. Other experiments should work with different CPU
architectures other than Intel CPUs with a little modification, al-
though we did not strictly check if they run properly. We used Intel
Xeon Platinum 8180M (two sockets) and Intel Xeon Phi 7250 for
our experiments. Multiple nodes are preferable for the evaluation
of LAMMPS; we used four nodes for our experiments.

A.3.3 Software dependencies. Linux should be used as an OS
because the artifact uses Linux-specific functionalities. The system
should install Intel C/C++ compiler, Intel MKL, Intel OpenMP, and
Intel MPI. Although some scripts assume Intel compilers, they

should be able to be compiled with other compilers with a little
modification of scripts (e.g., check –use-gcc option for each script).
Singularity or Docker has to be installed to plot graphs.

A.4 Installation
Download the archive from https://doi.org/10.5281/zenodo.4420552
or git clone from https://github.com/s417-lama/ppopp21-
preemption-artifact.

A.5 Experiment workflow
To configure machine configuration such as the number of cores
and the number of sockets in a node, envs.bash should be modified.
Running ./measure_XXX.bash (XXX is the name of the benchmark
to run; see the next section) will compile the runtime systems such
as Argobots and BOLT under some specific configuration for the
benchmark, compile benchmark programs, store raw results by
running benchmarks, and finally generate a plot summarizing the
raw results.

The raw results are saved in the <subdir>/results directory,
where <subdir> is the sub directory of each benchmark (e.g. chol).
The raw results are summarized by plotting scripts that run on
a Docker container (Docker image: s417lama/plotly_ex), which
utilizes Plotly.js library (https://plotly.com/javascript/) for vi-
sualization. Only this process requires Singularity or Docker be
installed.

See README.md in the downloaded archive for further informa-
tion.

A.6 Evaluation and expected results
The correspondence of the measurement scripts (measure_XXX.
bash) and the experimental results in this paper is summarized as
follows.

• measure_interrupt.bash outputs a plot (interrupt_plot.
html) corresponding to Figure 4.
• measure_overhead.bash outputs a plot (overhead_plot.

html) corresponding to Figure 6.
• measure_overhead_direct.bash outputs as text context

switching times corresponding to Table 1.
• measure_chol.bash outputs a plot (chol_plot.html) corre-

sponding to Figure 7.
• measure_hpgmg.bash outputs a plot (hpgmg_plot.html) cor-

responding to Figure 8.
• measure_lammps.bash outputs a plot (lammps_plot.html)

corresponding to Figure 9.

HTML files of the plots can be opened with a web browser. If
the range of axes is not properly set, it is possible to zoom in/out
on the graph interactively.

The raw results used in this paper are stored in the raw_results
directory; the results obtained in other systems (in the <subdir>/
results directory) can be compared against them.

We note that we set a small number of repeats and a small subset
of the data points for several benchmarking scripts to reduce the
running time. To reproduce the full results in this paper, please fol-
low the instructions for customizing the benchmarks in README.md
in the archive.

https://bitbucket.org/icl/slate/src
https://doi.org/10.5281/zenodo.4420552
https://doi.org/10.5281/zenodo.4420552
https://github.com/s417-lama/ppopp21-preemption-artifact
https://doi.org/10.5281/zenodo.4420552
https://doi.org/10.5281/zenodo.4420552
https://doi.org/10.5281/zenodo.4420552
https://github.com/s417-lama/ppopp21-preemption-artifact
https://github.com/s417-lama/ppopp21-preemption-artifact
https://plotly.com/javascript/
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A.7 Experiment customization
When running measure_interrupt.bash, the shell variable THREADS
in preemption_benchmarks/measure_jobs/timer_measure.bash
should be modified to set proper numbers of threads to use.

If numactl option is not installed in the system, please remove
numactl –interleave=all and numactl –iall in chol/run.bash
and lammps/measure.bash. This may affect the performance re-
sults in multi-socket machines; in that case it is recommended to
install numactl in the system.

For further customization of the experiments, including the num-
ber of repeats and the problem sizes, see README.md in the down-
loaded archive.

A.8 Notes
If benchmark programs unexpectedly finish without any output or
error, the error message may not be shown in the console. Because
all outputs of benchmarks (including standard errors) are stored in
the <subdir>/results directory. Please check *.err files under
the result directory to see errors output to stderr.

A.9 Methodology
Submission, reviewing and badging methodology:
• https://www.acm.org/publications/policies/artifact-review-

badging
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
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