BOLT: Optimizing OpenMP Parallel Regions
with User-Level Threads

Shintaro Iwasaki’, Abdelhalim Amer?,
Kenjiro Taura’, Sangmin Seo?, Pavan Balaji*

"The University of Tokyo
*Argonne National Laboratory

Email: iwasaki@eidos.ic.i.u-Tokyo.ac.jp, siwasaki@anl.qov

mailto:iwasaki@eidos.ic.i.u-Tokyo.ac.jp

OpenMP: the Most Popular Multithreading Model

penMP

= Multithreading is essential for exploiting O

modern CPUs.

Enabling HPC since 1997

= OpenMP is a popular parallel programming model.

— In the HPC field, OpenMP is most popular for multithreading.

e 57% of DOE exascale applications use OpenMP [*].

= Not only user programs but also runtimes and libraries are

parallelized by OpenMP.

DNN library

~J
Kokkos, RAJA, OpenBLAS, Intel MKL, SLATE, Intel MKL-DNN, FFTW3, ...

N
Runtimes that have BLAS/LAPACK libraries
an OpenMP backend

[*] D. E. Bernholdt et al. "A Survey of MPI Usage in the US Exascale Computing Project", Concurency Computat Pract Expr, 2018

7\

FFTW library

2

Unintentional Nested OpenMP Parallel Regions

#pragma omp parallel for
for (i = 0; 1 < n; i++)
dgemv(matrix[n], ...);

// BLAS library
void dgemv(...) {
#pragma omp parallel for

for (i = 0; 1 < n; i++)
dgemv_seq(data[n], 1i);

4]

User Applications

1 __| OpenMP-parallelized code |

Scientific Library
| OpenMP-parallelized code |
...... “|" Wrath-kibracy A || Math Library B
I OpenMP-parallelized code I I OpenMP-parallelized code I
) AR L B
High-tével
*"Runtime System
2 4

Code Example

s
.t
Py
Py
““““
.
Py
P
Py

OpenMP Runtime System

= OpenMP parallelizes multiple software stacks.

= Nested parallel regions create OpenMP threads exponentially.

#pragma omp parallel for
for (i = 0; i < n; i++)
dgemm(matrix[n], ...);

void dgemm(...):
#pragma omp parallel for
for (i = 0; 1 < n; i++);

Thread

Parallel Region

Thread

Thread || Thread Thread

Parallel Region

Parallel Region

Parallel Region

Thread

Thread || Thread

Threadl

Thread Thread jf Thread

Thread - Thread

Thread || Thread

Threa

d

Parallel Region

Can We Just Disable Nested Parallelism?

= How to utilize nested parallel regions?
— Enable nested parallelism: creation of exponential the number of threads

— Disable nested parallelism: adversely decrease parallelism

= Example: strong scaling on massively parallel machines

Is the outer parallelism enough to feed work to all the cores???

—\
Cells LT Cells HHICTH
#pragma omp parallel for
for i = oy L< s 14e)
comp(cells[il, ...);
Core | Core
-m_-m_
. Core Core Core Core Core Core Core Core
void comp(...): ‘ | Core Core Core Core Core Core Core Core
ool e Noge
#pragma omp parallel for . Node Node
for (i = @; i < n; i++); Multicore Manycore | | |

Manycore + Many nodes

N -
Two Directions to Address Nested Parallelism

= Nested parallel regions have been known as a problem since
OpenMP 1.0 (1997).
— By default, OpenMP disables nested parallelism[*

= Two directions to address this issue:

1. Use several work arounds implied in the OpenMP specification.

=> Not practical if users do not know parallelism at other software stacks.

2. Instead of OS-level threads, use lightweight threads as OpenMP threads

User-level threads (ULTs, explained later)

=> |t does not perform well if parallel regions are not nested (i.e., flat).

e |t does not perform well even when parallel regions are nested.

=> Need a solution to efficiently utilize nested parallelism.

[*] Since OpenMP 5.0, the default becomes “implementation defined”, while most OpenMP systems continue to disable nested parallelism by default.

5

BOLT: Lightweight OpenMP over ULT
for Both Flat & Nested Parallel Regions

= We proposed BOLT, a ULT-based OpenMP runtime system,
which performs best for both flat and nested parallel regions.

= Three key contributions:

1. Anin-depth performance analysis in the LLVM OpenMP runtime,
finding several performance barriers.

2. Animplementation of thread-to-CPU binding interface that
supports user-level threads.

3. A novel thread coordination algorithm to transparently support both
flat and nested parallel regions.

Index

2. Existing Approaches

OS-level thread-based approach

User-level thread-based approach
e What is a user-level thread (ULT)?

Direction 1: Work around with OS-Level Threads (1/2)

#pragma omp parallel for EE Thread
for (i = @; i < n; i++) k

dgemv(matrix[n], ...); Parallel Region

// BLAS library Za Thread

Thread Thread Thread

void dgemv(...) { | b8

#pragma omp parallel for 2 . o . .
for (i = @; i < n; i++) Parallel Region Parallel Region Parallel Region Parallel Region

.

|Thread

dgemv_seq(data[n], i);
} :;’: Thread

|Thread

= Several workarounds

1. Disable nested parallel regions

(0MP_NESTED='False, OMP_ACTIVE_LEVELS=..)
e Parallelism is lost.

2. Finely tune numbers of threads
(0MP_NUM_THREADS=nth1, nth2,nth3,..)

e Parallelism is lost. Difficult to tune
parameters.

o

ot

""""
. o

""""
RS

|Thread

e

Thread

Parallel Region

Thread Thread | Thread | Thread

Parallel Re~i-

Parallel Region = 'lel Region . arallel Region

1. OMP_NESTED=false
Thread I

Thread | Thread | Thread |

Parallel Region Parallel Region Parallel Region
Thread " Thread " Thread | Thread " Thread |- Thread " Thread " Thread |

2. OMP_NUM_THREADS=3,3

Direction 1: Work around with OS-Level Threads (2/2)

= Workarounds (cont.)

3. Limit the total number of threads
(oMP_THREAD_LIMIT=nths)
e Can adversely serialize parallel regions;
doesn’t work well in practice.
4. Dynamically adjust # of threads
(omp_bynaMic=true)
e Can adversely serialize parallel regions;
doesn’t work well in practice.
5. Use OpenMP task

(#pragma omp task/taskloop)

e Most codes use parallel regions.
Semantically, threads != tasks.

Thread

Parallel Region

Thread

Thread | Thread |

Thread |

‘I
‘I

Parallel Region

Parallel Region

Parallel Region

Parallel Region

;“‘
Thread|
»

Parallel Region

Thread Thread Thread El j
h 3. OMP_THREAD_LIMIT=8
Thread

Thread

Thread | Thread |

Thread |

‘I
‘I
‘I

Parallel Region

Parallel Region Parallel Region

Threadl ThreadIThreadl

ThreadIThread Thread

Thread

4. OMP_DYNAMIC=true

Parallel Region

Parallel Region

=
Ey
3
2
2

i)

Thread

Thread || Thread

Thread |

|TaskITaskiTask|Taski |TaskITaskITaskITask| |TaskITaskITaskITask| iTaskiTaskiTaskITaskl

5. task/taskloop

How about using lightweight threads for OpenMP threads?

Direction 2: Use Lightweight Threads
=> User-Level Threads (ULTs)

1E+6
= User-level threads: threads implemented <
G TE+4 > 350x
in user-space. S e I
— Manages threads without heavyweight kernel £ ¢,

Pthread ULT
(Argobots[*])

Fork-Join Performance on KNL

operations.

Thread scheduling (= context
switching) involves heavy system
calls.

z Pthreads Pthreads
W (User-level threads (ULTs) are
Kernel (OS) running on Pthreads; scheduling

s done by user-level context

switching in user space.
Naive Pthreads \ /

Pthreads
Pthreads
Pthreads
Pthreads
Pthreads
Pthreads
Pthreads
Pthreads

User-level threads

[*]S. Seo et al. "Argobots: A Lightweight Low-Level Threading and Tasking Framework", TPDS '18, 2018
10

Solution 2: Use User-Level Threads

= The idea of ULTs is not new (pack to <90s).

&Y 2 N

= Several ULT-based OpenMP systems havé been proposed.

— NanosCompiler [1], Omni/ST [2], OMPi [3], MPC [4], ForestGOMP [5],
OmpSs (OpenMP compatible mode) [6], LibKOMP [7] ...

[1] Marc et al., NanosCompiler: Supporting Flexible Multilevel Parallelism Exploitation in OpenMP. 2000

[2] Tanaka et al., Performance Evaluation of OpenMP Applications with Nested Parallelism. 2000

[3] Hadjidoukas et al., Support and Efficiency of Nested Parallelism in OpenMP Implementations. 2008

[4] Pérache et al., MPC: A Unified Parallel Runtime for Clusters of NUMA Machines. 2008

[5] Broquedis et al., ForestGOMP: An Efficient OpenMP Environment for NUMA Architectures. 2010

[6] Duran et al., A Proposal for Programming Heterogeneous Multi-Core Architectures. 2011

[7] Broquedis et al., libKOMP, an Efficient OpenMP Runtime System for Both Fork-Join and Data Flow Paradigms. 2012

= However, these runtimes do not perform well for
several reasons.

— Lack of OpenMP specification-aware optimizations

— Lack of general optimizations For apples-to-apples comparison, we will
focus on the ULT-based LLVM OpenMP.

11

Using ULTs is Easy

OpenMP-Parallelized Program

IIIIIIIIIIII G hT I NN NN NN NN AN NN NN NN N NN NN NN

LLVM OpenMP || OpenMP || OpenMP || OpenMP

OpenMP | Thread Thread Thread Thread
Pthreads Pthreads Pthreads Pthreads

LLVM OpenMP 7.0

is a piece of cake.

OpenMP-Parallelized Program
LLVM lllllllllllllllllllllllll S“EEEEEEEEEEN, SEESESEEESEEEER
OpenMP OpenMP OpenMP OpenMP OpenMP
e T Thread Thread Thread Thread
ULT layer ULT ULT ULT ULT
(Argobots) | Scheduler 1| Scheduler |
Pthreads Pthreads

LLVM OpenMP 7.0 over ULT (= BOLT baseline)

= Replacing a Pthreads layer with a user-level threading library

— Argobotsl* we used in this paper has the Pthreads-like API
(muteX, TLS,)’ making thlS process eaSier.i Note: other ULT libraries (e.g., Qthreads, Nanos++,

MassiveThreads ...) also have similar threading APls.

— The ULT-based OpenMP implementation is OpenMP 4.5-compliant
(as far as we examined)

= Does the “baseline BOLT” perform well?

12

[*1S. Seo et al. "Argobots: A Lichtweight Low-Level Threadine and Taskine Framework" TPDS '18 2018

Simple Replacement Performs Poorly

// Run on a 56-core Skylake server
#pragma omp parallel for num_threads(N)
for (int i = @; i < N; i++)
#pragma omp parallel for num_threads(28)
for (int j = ©; j < 28; j++)
comp_20000 cycles(i, j);

Nested Parallel Region (balanced)

— Faster than GNU OpenMP.
e GCC

— So0-so among ULT-based OpenMPs
e MPC, OMPi, Mercurium

— Slower than Intel/LLVM OpenMPs.

e Intel, LLVM

Popular Pthreads-based OpenMP

State-of-the-art ULT-based OpenMP

1E+0
' Lower is better

1E-1
)
e 1E-2
<
©
5 1E3
(O]
)

1E-4

1E-5

1 10 100
of outer threads (N)

—&— BOLT (baseline) —e— GCC —e— MPC
—o— OMPi —e&— Mercurium Intel
——LLVM e Ideal

| LLVM: LLVM OpenMP with LLVM/Clang 7.0
" MPC: MPC 3.3.0

GCC: GNU OpenMP with GCC 8.1
Intel: Intel OpenMP with ICC 17.2.174

OMPi: OMPi 1.2.3 and psthreads 1.0.4
Mercurium: OmpSs (OpenMP 3.1 compat) 2.1.0 + Nanos++ 0.14.1

13

Index

3. BOLT for both Nested and Flat Parallelism
— Scalability optimizations
— ULT-aware affinity (proc_bind)

— Thread coordination (wait_policy)

14

Three Optimization Directions for Further Performance

1E+0

// Run on a 56-core Skylake server

#pragma omp parallel for num_threads(N)

for (int i = @; i < N; i++) 1E-1
#pragma omp parallel for num_threads(28)
for (int j = ©; j < 28; j++)

comp_20000_cycles(i, j); o 1E-2
Nested Parallel Region (balanced) ug)
g 1E-3
= The naive replacement (gott (baseline)) &
“1E-4
does not perform well.
1E-5
= Need advanced optimizations 1E-6 0 .
1 1 1
1. Solving scalability bottlenecks # of outer threads (N)
’) ULT-frlendIy affinity enguw BOLT (baseline) e=wessBOLT (opt)
) =@+ GCC Intel
3. Efficient thread coordination o LLVM @ MPC
e OMPI @+ Mercurium
........ Ideal

15

1. Solve Scalability Bottlenecks (1/2)

Thread |

Parallel Region

(

Teamcache |||l Teamcache ||| | Teamcache ||| Teamcache |

Thread

Threag

Threid 4 Thread

[Thread

IThread

ParanL' Reglon ParaIIeI Revlon

|Thread

Threa || hrea |

Thread desc. pool

o)
Team desc. pool

Thread ID counter

‘ ‘Team desc. pool

Parallel Region

Tn W e
‘Thread desc. pool

hread ID counter
%

= Resource management optlmlzatlons

1.

Divides a large critical section protecting all threading resources.
e This cost is negligible with Pthreads.
Enable multi-level caching of parallel regions

e Called “nested hot teams” in LLVM OpenMP.

16

1. Solve Scalability Bottlenecks (2/2)

= Thread creation optimizations

3. Binary creation of OpenMP threads.

Master
Thread 0

Thread 1

Thread 2

Master
Thread 0

Y
i i Thread 1 I ;
\

Serial Thread Creation (default LLVM OpenMP)

v % i Thread 3 | ¢

// Run on a 56-core Skylake server
#pragma omp parallel for num_threads(L)
for (int i = 0; 1 < L; i++)
#pragma omp parallel for num_threads(56)
for (int j = 9; j < 56; j++)
no_comp();

Nested Parallel Regions (no computation)

A

No computation to measure the pure overheads.

The critical path gets shorter.

Execution time [s]

Binary Thread Creation

1E-2 .

—e—BOLT (baseline)

—e— + Efficient resource management

++ Scalable thread startup
1E-3
1E-4
‘Lower is better

1E-5

1 10 100
of outer threads (L)

17

2. Affinity: How to Implement Affinity for ULTs

// OMP_PLACES={0,1},{2,3},{4,5},{6,7}
// OMP_PROC_BIND=spread

#pragma omp parallel for num_threads(4)
for (1 = 0; 1 < 4; i++)

With proc bind, threads are bound to places. comp(1);
w
et sessssssamssssssssEannnes P REPPTYPPPPNPrry FEPTTIPTPTEIN PLCUITTTTIPPPIPPPPIPPPPIPPPIPRID P EITTTYPPPTTIPPPITIPPPITIPPPPRN
OpenMP Thread 0 EE OpenMP Thread 1 é OpenMP Thread 2 EE OpenMP Thread 3
Place O Place 1 = Place 2 Place 3

ST WO

= OpenMP 4.0 introduced place and prod bind for affinity.

— OS-level thread-based libraries (e.g., GNU OpenMP) use CPU masks.
= BOLT (baseline) ignored affinity (still standard compliant).
= However, affinity should be useful to

1. improve locality and 2. reduce queue contentions.

— Note: ULT runtimes use shared queues + random work stealing.

= How to implement place over ULTs?

18

Implementation: Place Queue

// OMP_PLACES={0,1},{2,3},{4,5},{6,7}
// OMP_PROC_BIND=spread

[| Place queues can implement #pragma omp par‘allel for num_thr‘eads(4)

for (1 = 0; 1 < 4; i++)

OpenMP affinity in BOLT. comp(i);

=
[«}]
(@]
()
o
=)
Q
0
()
[N
FoaddR
)
Q
(@]
D
N
)
Q
(@]
D
w

1 1 . 1 1

OpenMP OpenMP
S— 1Y T2 - S aT7-FYs -
ULT ULT
7'y Place queue Place queue Place queue Place queue
OpenMP
S =Y. T -
! ULT
Shardd queue Shared queue Shared queue Shared queue Shared queue Shared queue Shared queue
Scheduler Scheduler 1 Scheduler 2 Scheduler 3 Scheduler 4 Scheduler 5 Scheduler 6 Scheduler 7
Pthreads Pthreads Pthreads Pthreads Pthreads Pthreads Pthreads Pthreads

" Problem: OpenMP affinity setting is too deterministic.

19

OpenMP Affinity is Too Deterministic

// OMP_PLACES={0,1},{2,3},{4,5},{6,7}

= Affinity (orbind-var) is ONce set, all | 7/ ovp_Proc_BIND=spread
#pragma omp parallel for num_threads(8)

for (int 1 = 0; i < 8; i++)
the OpenMP threads Created #pragma omp parallel for num_threads(8)
for (int j = 0; j < 8; j++)

in the descendant parallel comp(i, 3);

regions are bound to pIaces. ﬁ The OpenMP specification writes so.

Limited load balancing.]

Place queue Place queue Place queue
E Shared queue hared queue Shared queue Shared queue Shared queue Shared queue Shared queue
: Scheduler On. I Scheduler 2n. $chedu|er3 Scheduler 4-,. Scheduler cheduler 7
" sREREEIAS nmn i nunn Rthr-evads "un -:;- wnuRiREQAES nnnmuunn REEOAES « x x #h « « PLArEEEEH 2 2 2 8unn s Pihfeadss= " PilRFeaE6nnnamunns Pikkeaes==»

= Promising direction: scheduling innermost threads with
unbound random work stealing.

20

Proposed New PROC_BIND: “unset”

OMP_WAIT_POLICY=unset: reset the affinity setting of the specified parallel region.

(Detailed: The unset thread affinity policy resets the bind-var ICV and the place-partition-var ICV to their implementation defined values and instructs the execution environment to follow these values.)

// OMP_PLACES={0,1},{2,3},{4,5},{6,7}
// OMP_PROC_BIND=spread
#pragma omp parallel for num_threads(8)
for (int i = @; i < 8; i++)
#pragma omp parallel for num_threads(8)
for (int j = 0; j < 8; j++)
comp(i, j);

»

// OMP_PLACES={@,1},{2,3},{4,5},{6,7}
// OMP_PROC_BIND=spread,unset
#pragma omp parallel for num_threads(8)
for (int i = @; i < 8; i++)
#pragma omp parallel for num_threads(8)
for (int j = 0; j < 8; j++)
comp(i, j);

PRrsceore

i=1

PPIgRe@-gue

i=7

Piercaugue

They can be scheduled on any co

Random work steal
innermost threads.

Shared queue

|

Scheduler 2 'l Scheduler

Scheduler 0 Scheduler 1
Pthreads Pthreads Pthreads Pthread:
Core 0 Core 1 Core 2 Core 3

= This scheduling flexibility
gives higher performance.

Execution time [s]

1E-3 —e—BOLT (baseline)
—e— + Efficient resource management
++ Scalable thread startup
—e— +++ Bind=spread
—e— ++++ Bind=spread,unset
1E-4
‘Lower is better
1E-5
1 10 100
of outer threads (N)

21

3. Flat Parallelism: Poor Performance

= BOLT should perform as good as the original LLVM OpenMP.

Nested Parallel Regions (no computation) Flat Parallel Region (no computation)
#pragma omp parallel for num_threads(56) #pragma omp parallel for num_threads(56)
for (int i = @; i < 56; i++) for (int 1 = ©; i < 56; i++)
#pragma omp parallel for num_threads(56) no_comp(i);
for (int j = @; j < 56; j++) no_comp(i, j);
1E+6 1E+2
7 1E45 7 Lower is better
(]
2 1E+4 £
c 1E+3 c 1E+1
2 k)
5 1E+2 =
] a
3 1E+1 l o I
1E+0 1E+0

A BOLT f \ GCC Intel LLVM f BOLT Intel LLVM f
1 ! Y I
(PASSIVE) OMP_WAIT_POLICY=PASSIVE (PASSIVE) OMP_WAIT_POLICY=ACTIVE

= Optimal oMP_WAIT_POLICY for GCC/Intel/LLVM improves
performance of flat parallelism.

22

Active Waiting Policy for Flat Parallelism

for (int iter = @; iter < n; iter++) {
#pragma omp parallel for num_threads(4)
for (int i = 0; i < 4; i++)
comp(i);

}

= Active waiting policy improves performance of flat parallelism
OMP_WAIT_POLICY]

by busy-wait based synchronization.ﬁ

=<active/passive>
= |f active, Pthreads-based OpenMP = BOLT on the other hand yields to a
busy-waits for the next parallel region. scheduler on fork-and-join (~ passive).
fork join fork join join fork join
Thread 0 ' : ! Thread 0 | | |
rea =l comp =Pl=———d comp >} > res »= comp > comp [=>l—>
(master) Scheduler 0 Thread 1
I I I I I | I
Thread 1 —’:- comp 'I :: comp —’:——V Scheduler 1 == comp : »—1 Th—d-:- comp —P:——>
I rea
| | | | | |
Thread2 | =—>= comp [~»—>= comp [Scheduler2 | == comp [, comp [F—>
| | | | l find | Thread 3 I
' | | | I next ULT |
Thread3 | =1 comp [> comp [~=r—> Scheduler3 | === comp -F|—>—|—J—F- comp [r—>
I I bus_y I I bUS_V Iswitch switch I
wait wait to sched to thread

* If passive, after completion of work, threads sleep on a condition variable.

Busy wait is faster than lightweight user-level context switch!

Implementation of Active Policy in BOLT

=

If active, busy-waits for next = If passive, relies on ULT

parallel regions. context switching.
fork join fork join fork join fork join
I I I I I I [I
Thread 0 ol | Thread 0 — —>—
Scheduler 0 '; comp _1 : comp '; > ['scheduler 0 | comp comp I
Thread 1 - comp R = comp =L | scheduler1| — comp comp o
Scheduler 1 I I I I I I
| |
Thread 2 :I comp —J_J' comp —J_’ Scheduler2 | == comp comp [=F—>
Scheduler 2 I I I I I I
Thread 3 I I I I I I next ULT I
»r comp P> comp [=Py—> | Scheduler3 | =% comp —> >= _comp [~ 1>
Scheduler 3 busy busy . .
Y 177 I I Iswitch switch I
wait wait to sched to thread

J
ULT threads are not preemptive, so BOLT periodically yields to a
scheduler in order to avoid the deadlock
(especially when # of OpenMP threads > # of schedulers).

24

Performance of Flat and Nested

#pragma omp parallel for num_threads(56) #pragma omp parallel for num_threads(56)
for (int i = 0; i < 56; i++) for (int i = @; i < 56; i++)

#pragma omp parallel for num_threads(56) no_comp(i);

for (int j = @; j < 56; j++) no_comp(i, j);

1E+6 — 1E+4
MPC serializes nested parallel .

regions, so it’s fastest.

N~

1E+3 As BOLT didn’t, MPC ... OMPi do not
implement the active policy.

1E+2

i E E /

E 1E+0 E I I E /
Nested (passive) Flat (active) ' Lower is better

25

Execution time [us]
= = = =
m m m m
+ + + +
o =5 N w

a
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Execution time [us]

Penalty of the Opposite Wait Policy

60

(%))

=h

(]

.g 40

=

8 20

: 3Xl i I

=0

BOLT Intel LLVM
M active M passive Flat

Lower is better

~650,000
_ 1E+4
(%))
=
o 1E+3
E
+ 1E+2
C
Re!
5 1E+1
(&)
()]
S 1E+0
BOLT Intel LLVM
M active M passive Nested

#pragma omp parallel for num_threads(56)

for (int i = @; i < 56; i++)
#pragma omp parallel for num_threads(56)
for (int j = @; j < 56; j++) no_comp(i, j);

#pragma omp parallel for num_threads(56)
for (int i = 9; i < 56; i++)
no_comp(i);

= How to coordinate threads significantly affects the overheads.

— Large performance penalty discourages users from enabling nesting.

= |sthere a good algorithm to transparently support both

flat and nested parallelism?

26

Busy Waiting in Both Active/Passive Algorithms

BOLT (active) BOLT (passive)
fork join fork join fork join fork join
I | I | I I |
Thread 0 R _ _ | Thread 0 !
Scheduler0 | > _comp |1 conp =t——> | chedulero]
Thread 1 I I I I I I \ I
Scheduler 1 | | Scheduler 1
Thread 2 _
Scheduler 2 1 com I . - II > | Scheduler 2 'I - "I | |
Scheduler 3 > conp b——+H{ conp s+——> | scheduler -
busy 1 | busy 1| | I Iswitch switch l

wait

\NTt

void omp_thread() {
RESTART_THREAD:
comp();
while (time_elapsed() < KMP_BLOCKTIME) {
if (team->next_parallel region_flag)
goto RESTART_THREAD;

}
}

to schedAto thread

void user _scheduler() {
while (1) {

ULT_t *ult = get_ULT_from_queue();
if (ult != NULL)
execute(ult);

Though in both active and passive cases, they enter busy-

waits after the completion of threads.

— Can we merge it to perform both scheduling and flag checking?

27

Algorithm: Hybrid Wait Policy

f BOLT (active) BOLT (passive) \
fork join fork join fork join fork join
Thread 0 ! ! ! ! Thread 0 ' ' '
|_Scheduler 0 Scheduler 0
e
e
reE Y ey FUBBIN ¥ oy NG e
T busy I I busy I I I Iswitch switch I
wait wait to sched to thread j
. void omp thread() {
BOLT (hybrid) RESTART THREAD:
fork join fork join comp();
: : : : while..(time..elapsed()..<..KMP.BLOCKTIME).. {

busy |
wait

il
R] !
Schsa?efz
e

I busy wait l
+ find next ULT

glf (team->next parallel region_flag) :

: (par‘ent:scheauler');
:if (ult != NULL)
return_to_sched _and run(ult);

by This technique is not applicable to OS-level
threads since the scheduler is not revealed.

]

[flat]: a thread does not go back to a scheduler.

[nested]: another available ULT is promptly scheduled.

28

Excution time [us]

Performance of Hybrid: Flat

and Nested

Lower is

~650,000

better

60 __1E+4
(%]
= 1E+3
(]
40 £
+ 1E+2
S
20 I S 141 II
o
o S 1E+0
BOLT Intel LLVM BOLT Intel LLVM
M active M passive M hybrid Flat M active M passive M hybrid Nested

#pragma omp parallel for num_threads(56)
for (int i = @; i < 56; i++)
#pragma omp parallel for num_threads(56)

#pragma omp parallel for num_threads(56)
for (int i = @; i < 56; i++)
no_comp(i);

for (int j = @; j < 56; j++) no_comp(i, j);

= BOLT (hybrid wait polocy) is
always most efficient in both flat
and nested cases.

— We suggest a new keyword “auto”
so that the runtime can choose
the implementation.

1E-4 Nested Parallel Regions
(no computation)

of outer threads (N)

o
£
=
.8
5
O
Q
)
—e— ++++ Bind=spread,unset
—o— +++++ Hybrid policy
1E-5
1 10

100

29

Summary Of the DeSign // Run on a 56-core Skylake server

#tpragma omp parallel for num_threads(L)
for (int i = @; i < L; i++)
#tpragma omp parallel for num_threads(56)
for (int j = ©; j < 56; j++)

= Just using ULT is insufficient. no_comp() ;

=>Three kinds of optimizations: ~°BOLT (baseline)

1 —e— + Efficient resource management
: ++ Scalable thread startup
2. I —e—+++ Bind=spread
—e—++++ Bind=spread,unset

1. Address scalability bottlenecks
2. ULT-friendly affinity

3. —e— +++++ Hybrid policy
' i ' 1E-2
3. Hybrid wait policy for Nested Parallel Regions
flat and nested parallelisms (no computation)
.. S
(]
= Qur work solely focuses on OpenMP, £
while some of our techniques are generic: £
— Place queues for affinity of ULTs 2 1E-4
— Hybrid thread coordination for runtimes
that have parallel loop abstraction.
1E-5
1 10 100

of outer threads (L)

30

Index

1. Introduction

2. Existing Approaches
— OS-level thread-based approach

— User-level thread-based approach

e What is a user-level thread (ULT)?

3. BOLT for both Nested and Flat Parallelism
— Scalability optimizations
— ULT-aware affinity (proc_bind)

— Thread coordination (wait_policy)

4. Evaluation

5. Conclusion

—

31

Microbenchmarks

// Run on a 56-core Skylake server
#pragma omp parallel for num_threads(L)
for (int 1 = 0; i < L; i++) {
#pragma omp parallel for num_thLreads(28)
for (int j = 0; j < 28; j++)
comp_20000 cycles(i, j);

1E+0

1E-1

1E-2

1E-3

1E-4

Execution time [s]

1E-5

1E-6 ‘ Lower is better
1 10 100

of outer threads (L)

—&— BOLT (baseline) —e— BOLT (opt) —o— GCC
Intel ——LLVM —eo— MPC

—e— OMPi —e— Mercurium e Ideal

alpha makes the computation size random,
while keeping the

total problem size. o—— @l

———— largealpha

J

// Run on a 56-core Skylakg‘server
#pragma omp parallel for num_threads(56)
for (int i = @; i < 56; i++) {
int work_cycles = get _work(i, alpha);
#pragma omp parallel for num_threads(56)
for (int j = 0; j < 56; j++)
comp_cycles(i, j, work_cycles);}

1E+0
o

1E-1

O——0——C——0—0C *——o—0—0—0—9

Execution time [s]

@
1E-4 ‘
0.1 1

Alpha (A)

—o— BOLT (baseline) —e— BOLT (opt) —e— GCC
Intel —e— LLVM —o— MPC

—eo— OMPi —e— Mercurium — eeeeeees Ideal

(Ideal): theoretical lower bound under perfect scalability.

Lower is better

10

32

Execution time [s]

Microbenchmarks: vs. taskloop

// Run on a 56-core Skylake server
#pragma omp parallel for num_threads(56)
for (int 1 = 0; 1 < L; i++) {
#pragma omp taskloop grainsize(1)
for (int j = 0; j < 28; j++)
comp_20000 cycles(i, j);

1E-2

1E-3

1E-4

1E-5

Outer loop count (L)

—— BOLT (baseline) —e—BOLT (opt)
—e— GCC (taskloop) Intel (taskloop)

—e— LLVM (taskloop) «--+++- Ideal

................. ‘ Lower is better
1 10

100

Execution time [s]

// Run on a 56-core Skylake server
#pragma omp parallel for num_threads(56)
for (int i = @; i < 56; i++) {
int work_cycles = get_work(i, alpha);
#pragma omp parallel for num_threads(56)
for (int j = 0; j < 56; j++)
comp_cycles(i, j, work_cycles);}

1E-1

‘ Lower is better
0.1 1 10

Alpha (A)

—— BOLT (baseline) —e—BOLT (opt)
—e— GCC (taskloop) Intel (taskloop)

—e— LLVM (taskloop) ===+« Ideal

= Parallel regions of BOLT are as fast as taskloop!

33

Evaluation: Use Case of Nested Parallel Regions

"= The number of threads for outer | :Function call
loops is usually set to # of cores. User Applications
| |_OpenMP-parallelized code __|
— i.e., if not nested, oversubscription Scientific Library
does not happen. | OpenMP-paraIIIizdcode -
Math LiraryA Mth Library B
= However, many layers are Comree] | | o]
OpenMP parallelized, which can griy—
. . . . Runtime System
unintentionally result in nesting. ¢ VA

OpenMP Runtime System

= We will show two examples.

34

Evaluation 1: KIFMM

= KIFMMCU: highly optimized N-body solver

— N-body solver is one of the heaviest kernels
in astronomy simulations.

= Multiple layers are parallelized by OpenMP.

OpenMP parallelized cod
= We focus on the upward phase penMP parallelized code
in KIFMM. il
OpenMP OpenMP
parallelized code parallelized code

for (int i = @0; i < max_levels; i++)
#pragma omp parallel for
for (int j = @; j < nodecounts[i]; j++) {
[...];
dgemv(...); // dgemv() creates a parallel region.

}

OpenMP Runtime System

[*] A. Chandramowlishwaran et al., "Brief Announcement: Towards a Communication Optimal Fast Multipole Method and Its Implications at Exascale", SPAA '12, 2012

35

Performance: KIFMM

2.5
void kifmm_upward(): g _
for (int i = @; i < max_levels; i++) ET
#pragma omp parallel for num_threads(56) E_S:‘jl.il g
for (int j = ©; j < nodecounts[i]; j++ S m
[(];J | [115 J++) { 25—
oo 5 = [|
dgemv(...); // creates a parallel region. §80_;-1 \“*\
} 0 Higher is better
)) 1 10 100
void dgemv(...): // in MKL # of inner threads (N)
#pragma omp parallel for num_threads(N) NP=12, # pts = 100,000
for (int i =0; i < [...]; i++) —e—BOLT (opt) —e—Intel (nobind) Intel (true)
dgemv_sequential(...); Intel (close) ~ —e—Intel (spread) ——Intel (dyn)

Different Intel OpenMP configurations:
nobind(=false),true,close,spread: proc_bind
dyn: MKL_DYNAMIC=true

Note that other parameters are hand tuned
(see the paper).

= Experiments on Skylake 56 cores.

— # of threads for the outer parallel region = 56

— # of threads for the inner parallel region = N (changed)

= Two important results:
— N=1 (flat): performance is almost the same.

— N>1 (nested): BOLT further boosts performance.
36

Evaluation 2: FFT in QBox

= Qbox[* first-principles molecular

dynamics code.

................... 9] T T // FFT backward
- : = . #pragma omp parallel for
OpenMP parallelized code] for (int i = @; i < num / nprocs; i++)

fftw_execute(plan_2d, ...);

i]
..........

void fftw _execute(...): // in FFTW3

BLAS o o
L commupomsiotcon . faamm —L #pragma omp parallel for num_threads(N)
OpenMP Runtime Syst'é'r'ﬁ ---------- for (int i =0; i < [...]; i++)

fftw_sequential(...);

MPI

= We extracted this FFT kernel and change
the parameters based on the gold benchmark.

[*] F. Gygi, “Architecture of Qbox: A scalable first-principles molecular dynamics code,” IBM Journal of Research and Development, vol. 52, no. 1.2, pp. 137-144, Jan. 2008.
37

Performance: FFTW3

// FFT backward

#pragma omp parallel for

for (int i = @; i < num / nprocs; i++)
fftw_execute(plan_2d, ...);

void fftw_execute(...): // in FFTW3

[...];

#pragma omp parallel for num_threads(N)

for (int i =0; i < [...]; i++)
fftw_sequential(...);

—o—BOLT (opt) —e—Intel (nobind) —e—Intel (true)

Intel (close) —e—Intel (spread) —e—Intel (dyn)
Intel OpenMP configurations: nobind(=false),true,close,spread: proc_bind, dyn: OMP_DYNAMIC=true

* nprocs = # of MPI nodes
* num (and fftw size) is proportional
to # of atoms.

O FRLr N WD O R, N WD

O FRLr N WPH

1 10 100
64 atoms / 16 MPI
processes

10 100
64 atoms / 32 MPI
processes

1 10 100
64 atoms / 48 MPI

processes

Experiments on KNL 7230 64 cores.

of threads for the outer parallel region = 64
of threads for the inner parallel region = N (changed)

= N=1 (flat): performance is almost the same.

= N>1 (nested): BOLT further increased performance.

N
X axis: # of inner threads (N)
Y axis: relative performance (BOLT + N=1:1.0)

4 4
3 3
2 2
 eciE]) eadatem
0 0 o
1 10 100 1 10 100
96 atoms / 16 MPI 128 atoms / 16 MPI
processes processes
4 4
3 3
2 2
1 D
0 0
10 100 10 100
96 atoms / 32 MPI 128 atoms / 32 MPI
processes processes
4 4
3 3
2 2
1 1
0 0

1 10 100
128 atoms / 48 MPI
processes

1 10 100
96 atoms / 48 MPI

t processes
Higher is better

38

Index

1. Introduction

2. Existing Approaches
— OS-level thread-based approach

— User-level thread-based approach

e What is a user-level thread (ULT)?

3. BOLT for both Nested and Flat Parallelism
— Scalability optimizations
— ULT-aware affinity (proc_bind)

— Thread coordination (wait_policy)

4. Evaluation

5. Conclusion

\\=1 39

Summary of this Talk

= Nested OpenMP parallel regions are commonly
seen in complicated software stacks.

=> Demand for efficient OpenMP runtimes

to exploit both flat and nested parallelism. oo s

I OpenMP-parallelized code
Aokl A
o

= BOLT: an lightweight OpenMP library over ULT.

— Simply using ULTs is insufficient:
e Solve scalability bottlenecks in the LLVM OpenMP runtime
e ULT-friendly affinity implementation

e Hybrid thread coordination technique to transparently support

both flat and nested parallel regions.

= BOLT achieves unprecedented performance for nested parallel
regions without hurting the performance of flat parallelism.

40

Thank you for listening!

Artifact: - Sl
= BOLT: http://www.bolt-omp.org https://zenodo.org/record/3372716

(DOI: 10.5281/zen0d0.3372716)

= Q&A (as a software):
— What is the goal of the BOLT project? OpenMP LM Topents I opens [opene Jf opene |

aver ULT Thread Thread Thread Thread

I OpenMP-Parallelized Program

ULT layer |

e Improve OpenMP by ULTs: iwresoors) |

— 1. enrich OpenMP tasking features with least overheads,
— 2. minimizing overheads of OpenMP threads, and 3. more.
— How to use it?

e BOLT is a runtime library: no special compiler is required.
GCC/ICC/Clang + LD_LIBRARY_PATH+=S{BOLT INSTALL PATH} works.

— |s BOLT Stab|E? Much engineering efforts for ABI compatibility and stability.
——
e Regularly checked with LLVM OpenMP tests (GCC 8.x, ICC 19.x, and Clang 10.x)

\
Future work:

— What OpenMP features are supported? 4[s ek adhEe T

MPI+OpenMP interoperability

e OpenMP 4.5 including task,
task depend, and offloading.

Acknowledgment

/)

N This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of the U.S. Department of Energy’s
E \(\.1 |D Office of Science and National Nuclear Security Administration, responsible for delivering a capable exascale ecosystem, including
EXASCALE COMPUIT = T particular its subproject on Scaling OpenMP with LLVm for Exascale performance and portability (SOLLVE).

BOLT is part of the ECP SOLLVE project: https://www.bnl.gov/compsci/projects/SOLLVE/

m

s software, applications, and hardware technology, to support the nation’s exascale computing imperative. This research is in

41

