
BOLT: Optimizing OpenMP Parallel Regions with
User-Level Threads

Shintaro Iwasaki
The University of Tokyo

Tokyo, Japan
iwasaki@eidos.ic.i.u-tokyo.ac.jp

Abdelhalim Amer
Argonne National Laboratory

Lemont, Illinois, USA
aamer@anl.gov

Kenjiro Taura
The University of Tokyo

Tokyo, Japan
tau@eidos.ic.i.u-tokyo.ac.jp

Sangmin Seo
Argonne National Laboratory

Lemont, Illinois, USA
sseo@anl.gov

Pavan Balaji
Argonne National Laboratory

Lemont, Illinois, USA
balaji@anl.gov

Abstract—OpenMP is widely used by a number of applica-
tions, computational libraries, and runtime systems. As a result,
multiple levels of the software stack use OpenMP independently
of one another, often leading to nested parallel regions. Although
exploiting such nested parallelism is a potential opportunity for
performance improvement, it often causes destructive perfor-
mance with leading OpenMP runtimes because of their reliance
on heavyweight OS-level threads. User-level threads (ULTs) are
more lightweight alternatives but existing ULT-based runtimes
suffer from several shortcomings: 1) thread management costs
remain significant and outweigh the benefits from additional
parallelism; 2) the shift to ULTs often hurts the more common
flat parallelism case; and 3) absence of user control over thread-
to-CPU binding, a critical feature on modern systems.

This paper presents BOLT, a practical ULT-based OpenMP
runtime system that efficiently supports both flat and nested
parallelism. This is accomplished on three fronts: 1) advanced
data reuse and thread synchronization strategies; 2) thread
coordination that adapts to the level of oversubscription; and
3) an implementation of the modern OpenMP thread-to-CPU
binding interface tailored to ULT-based runtimes. The result is
a highly optimized runtime that transparently achieves similar
performance compared with leading state-of-the-art widely used
OpenMP runtimes under flat parallelism, while outperforming
all existing runtimes under nested parallelism.

Keywords—Multithreading; Runtime Systems; OpenMP; User-
Level Threads

I. INTRODUCTION

OpenMP is considered the most popular intranode parallel
programming interface in high-performance computing (HPC).
Numerous applications, computational libraries, and runtime
systems have been successfully parallelized with OpenMP.
Combining multiple OpenMP-parallelized codes, however, is
trickier than one might imagine. Consider contemporary ap-
plications developed on top of deep software stacks. Because
the parallelization at each software layer is more or less
independent of the other layers, this often leads to nested par-
allelism where one OpenMP parallel region embeds another.
Although an abundance of parallelism is potentially an oppor-
tunity for further performance improvement, it often results
in catastrophic performance degradation by oversubscription
of threads. Because most production runtimes use OS-level

threads1 to represent OpenMP threads, a naive implementation
that blindly spawns additional threads at each nested parallel
region can hardly tolerate the oversubscription cost.

To address this challenge, two orthogonal directions have
been explored: avoidance of oversubscription and reduction
of oversubscription overheads. The first direction is adopted
by widely used commercial and open source OpenMP im-
plementations such as GCC OpenMP [1], Intel OpenMP [2],
and LLVM OpenMP [3]. Their default settings turn off nested
parallel regions and consequently are tuned for flat parallelism
(i.e., a single-level parallel region). This solution avoids the
oversubscription issue without hurting the performance of flat
parallelism, but such an aggressive serialization misses any
parallelism opportunity exposed by nested parallel regions.
This situation is especially true when the top-level parallel
region does not have sufficient parallelism or the amount of
computation across loop iterations is irregular.

The second direction aims at reducing oversubscription
overheads. Leading OpenMP runtimes accomplish this by
reusing nested teams (threads and data associated with parallel
regions) across parallel regions [4] and by avoiding busy-
waiting [5]. Reusing, and thus keeping alive a large number
of OS-level threads, is more efficient than recreating and
destroying them but requires nevertheless expensive suspen-
sion and reactivation operations. Furthermore, taking away
busy-waiting implies the involvement of the kernel when
synchronizing threads at the entry and exit of a parallel region,
which hurts the performance of flat parallelism.

Mapping OpenMP threads to user-level threads (ULTs) has
also the benefit of reducing oversubscription overheads thanks
to lower fork-join costs. Numerous OpenMP implementations
have followed this approach [6]–[11] but fall short for several
reasons. First, they ignored other costs outside the native
thread fork-join overheads.2 An OpenMP runtime has to
manage other OpenMP-specific data and descriptors that are

1Most of these runtimes rely on POSIX threads (Pthreads), which follow
in most implementations a one-to-one mapping between a user thread and a
kernel thread in OS.

2An OpenMP thread has its own descriptor in addition to encapsulating a
native thread (be it OS- or user-level).

orthogonal to the native threading layer. Second, they overly
relied on ULT-based fork-join operations that poorly handle
flat parallelism, which is more efficiently implemented with
busy-waiting methods. Third, they offer virtually no control to
the user over thread-to-CPU binding, which is important on
modern systems to improve data locality. As a result, existing
ULT-based runtimes perform overall worse than finely con-
figured production OpenMP systems, leaving open questions
regarding their suitability as all-purpose OpenMP runtimes.

This paper presents BOLT, a practical ULT-based OpenMP
runtime that attains unprecedented performance for nested par-
allelism while also transparently supporting efficient execution
of flat parallelism. Through our in-depth investigation of the
ULT-based OpenMP runtime optimization space by exploring
both generic and OpenMP specification-driven optimizations,
we found necessity of optimizations beyond the naive map-
ping of ULTs and OpenMP threads; our solutions are: 1)
team-level data reuse and thread synchronization strategies
to minimize overheads in the OpenMP runtime; 2) a novel
thread coordination algorithm that transparently achieves high
performance for both flat and nested parallelism by adapting
to the level of oversubscription; and 3) an implementation
of the modern OpenMP thread-to-CPU binding interface tai-
lored specifically to ULT-based runtimes. Our evaluation with
several microbenchmarks and N-body and quantum chemistry
codes demonstrates that BOLT significantly outperforms ex-
isting OpenMP runtimes when parallel regions are nested, and
it suffers the least performance loss under flat parallelism.

We note that BOLT has briefly appeared in the past liter-
ature [12]–[14], although none of the literature presents the
details of its design and performance evaluation. The goal of
this work is to identify and address the issues in efficiently
utilizing ULTs in OpenMP.

II. BACKGROUND

Compared with flat parallelism (i.e., a single-level parallel
region), efficient handling of nested parallelism in OpenMP
has been considered challenging and thus the subject of studies
from the early years of OpenMP [6], [7]. In this paper we do
not advocate the use of nested parallel regions in a standalone
OpenMP program (e.g., [15]); after all, several alternatives,
such as task and taskloop constructs, are offered by the
OpenMP specification to leverage massive, deeply nested, or
recursive parallelism efficiently. The primary focus of this
paper is nested parallel regions that the user has limited
control over; for example, nested parallelism that takes place
across multiple layers of the contemporary software stack.
We illustrate this situation with the example in Fig. 1. We
observe that two layers of the software stack (the application
layer and the external library) depend on the same OpenMP
runtime. The user application code calls an external function
(e.g., dgemm()) in a parallel region, which is also parallelized
by a parallel region. An OpenMP runtime that blindly creates
OpenMP threads at each parallel region would result in an
exponential growth of the number of threads in the system
and serious performance degradation.

OpenMP-parallelized

external library

Application

OpenMP runtime system

Threading library (Pthreads, ULTs)

Core Core Core

OpenMP parallel region

OpenMP parallel region

// user code

void user_app(...):

#pragma omp parallel for

for (int i = 0; i < I; i++) {

[...];

dgemm(matrices[i], ...);

[...];

}

// an external library

void dgemm(...):

#pragma omp parallel for

for (int j = 0; j < J; j++)

dgemm_seq(...);

1

2

3

4

5

6

7

8

9

10

11

12

13

Fig. 1. Example of nested parallel regions. If the default number of OpenMP
threads is 64 (e.g., on a 64-core machine), this example creates 4,096 threads.

As shown in Fig. 1, OpenMP runtimes relies on a lower-
level threading layer, that we refer to as native, to implement
OpenMP threads and could be classified into two broad cat-
egories: heavyweight OS-level threads and lightweight ULTs.
The remainder of this section surveys the current landscape
in supporting nested parallelism with respect to the native
threading layer.

A. Current State in OS-Level Thread-Based Runtimes

Oversubscribing OS-level threads to hardware cores
severely degrades performance in HPC environments because
of expensive context switching between threads and pre-
emptive scheduling. Out of fear of oversubscription, OS-
level thread-based runtimes focus mostly on avoiding nesting
altogether through various methods. In the following, we
enumerate the most common practices. In this paper, we
assume OpenMP 4.5 [16].

Disabling of nested parallelism. This is the prevailing
method in practice. The OpenMP standard specifies an internal
variable called nest-var that can be controlled via the environ-
ment variable OMP NESTED or a function omp set nested().
The standard defines the default value of nest-var as false,
pessimistically assuming negative side effects from setting it
to true.3 This workaround clearly wastes parallelism opportu-
nities and might lead to CPU underutilization.

Manual concurrency control. Users can explicitly control
the numbers of threads at each parallel region with the
nthreads-var control variable. This approach gives more fine-
grained concurrency control to the user, which is better than
serializing all inner parallel regions. It remains cumbersome,
however, to coordinate multiple independent libraries and
applications on the degree of concurrency at each parallel
region. The optimal configuration is nontrivial to find because
it depends on various factors (target hardware, input problem,
application characteristicetc.) [18], rendering tuning concur-
rency at each parallel region impractical.

Collapsing of nested loops. With compiler support, the
collapse clause partitions iterations across nested loops, where
chunks of the nested loops are uniformly distributed while
keeping the number of OpenMP threads constant. This method
is impractical for parallel regions situated in dependent soft-

3OpenMP 5.0 [17] marks nest-var as deprecated and sets its default value
to implementation defined. We think that most production implementations
will continue to support it and disable nested parallelism by default.

2

ware libraries because it requires code changes and is appli-
cable only to consecutive nested loops.

Dynamic concurrency control. The specification defines
the thread-limit-var and dyn-var control variables that allow
users to cap the number of threads in a contention group
and to dynamically adjust the number of threads in a parallel
region, respectively. While these hints allow the runtime to
avoid an exponential concurrency growth, their effectiveness
is limited. The control variable thread-limit-var suffers from
the same shortcomings as the manual concurrency control
since users have to tune the upper bound on concurrency.
Dynamic concurrency control is implementation defined; for
instance, LLVM OpenMP 7.0 calculates the number of cur-
rently running OpenMP threads in the process in order to
avoid oversubscription. As we demonstrate in Section IV-A,
the number of threads is hardly a reliable metric to infer
resource utilization because it ignores factors such as load
imbalance and thread binding.

Use of OpenMP tasks. OpenMP tasks are designed as
lightweight parallel units of execution [19]. For example,
LLVM OpenMP implements user-space context switching
between tasks. Furthermore, taskloop has recently emerged as
a task-based substitute for parallel for [20]. Unfortunately,
because of semantic differences, OpenMP threads are not
always replaceable by tasks, as explored in [21]. For instance,
OpenMP tasks do not support thread-local storage, some
synchronization primitives (e.g., barrier), and CPU binding. In
addition, this approach requires rewriting inner parallel loops
in every external library, clearly making it impractical. Thus,
improving support for nested parallelism remains the most
practical direction given that parallel for is the predominant
form of parallelization by applications and libraries.

B. Current State in ULT-Based Runtimes

A trade-off is possible between exposing parallelism
through nested parallel regions and the corresponding thread
management costs; however, the high penalizing OS-level
thread management costs make searching for the best trade-
off challenging. The workarounds introduced by the specifi-
cation and implemented by leading OpenMP runtimes thus
have limited effectiveness when OS-level native threads are
adopted. In theory, with extremely lightweight native threads,
overprovisioning of threads is significantly less penalizing and
renders searching for the best trade-off much more practical.
Mapping OpenMP threads to lightweight ULTs is thus a
promising approach and has been investigated by numerous
studies [6]–[11]

However, we found that existing ULT-based runtimes per-
form worse than do finely tuned OS-level thread-based run-
times from both flat and nested parallelism perspectives. The
benefits of lightweight ULT-based native thread implemen-
tations are diminished by overheads of managing OpenMP-
specific data and descriptors. The ULT-based runtimes rely on
user-level context switching to fork and join threads before
and after every parallel region, but this algorithm is ineffi-
cient under flat parallelism compared with busy-waiting-based

OpenMP thread

...

Shared queues

Core

OS-level thread

Scheduler 0

Core

Scheduler 1

Core

Scheduler 2

OS-level thread OS-level thread

Steal work from

the remote queue

...

Push to the

local queue

Pop local work

if exists

Fig. 2. Basic design of BOLT. Created threads by a scheduler are pushed to
its local queue. A scheduler pulls a thread from its own queue; if it is empty,
random work stealing takes place.

methods used by leading OS-level thread-based runtimes. In
addition, because of absence of an interface to control thread-
to-CPU binding, these runtimes miss the opportunity to exploit
locality of hierarchical hardware and proximity among threads.
As a result, effectiveness of ULT-based OpenMP runtimes
remains questionable.

III. BOLT: EFFICIENT ULT-BASED OPENMP RUNTIME

Our goal is to develop a practical OpenMP runtime system
that efficiently supports both flat and nested parallelism to
exploit the ignored parallelism in contemporary applications
built atop highly stacked software layers. However, developing
a cutting-edge OpenMP runtime from the ground up is a
daunting task. We therefore created a runtime system based
on an existing leading OpenMP system, while, to boost
the performance of nested parallelism, we adopted ULTs
as OpenMP threads. Specifically, we chose the open-source
LLVM OpenMP library [3] as a baseline OpenMP imple-
mentation in order to take advantage of its maturity in terms
of performance and robustness. As for the native threading
layer, we chose Argobots [12], a highly optimized user-level
threading library.

The next section briefly describes the changes necessary to
the upstream LLVM OpenMP in order to run over a user-level
threading library. We follow with a deep dive into the various
overheads and bottlenecks that occur under flat and nested
parallelism and the corresponding solutions. We also describe
how they relate to or leverage knowledge from the OpenMP
standard, and we identify some shortcomings in the current
specification that limit optimization opportunities.

A. Baseline ULT-Based Runtime

BOLT was derived from LLVM OpenMP 7.0 [3] to inherit
its optimized and modern OpenMP support up to 4.5 [16]
as well as its application binary interface (ABI) compatibility
with other popular OpenMP runtimes. The first step in deriving
BOLT from LLVM OpenMP is a straightforward replacement
of any use of the Pthreads interface with corresponding
Argobots function calls. This involves not only replacing
fork-join calls and several synchronization mechanisms, but
also inheriting configuration parameters (e.g., stack size) and
adopting ULT-based thread-local storage (TLS). The critical
aspect that motivated using Argobots is, in addition to its high
performance, its functionalities similar to those provided by
Pthreads, which eased the replacement.

Fig. 2 shows the basic components of BOLT and how
OpenMP threads are managed. When the runtime is initialized,

3

BOLT spawns OS-level threads, typically as many as the
number of CPU cores, and runs schedulers on top of each
of the OS-level threads, which work as processors in the
OpenMP standard. Each scheduler has a shared ULT queue
that is accessed mainly by the owner but can be a target
of work stealing. We adopt a simple random work-stealing
algorithm [22]; the scheduler steals ULTs from another queue
only when its own queue is empty. This model follows the
same practice found in existing ULT-based OpenMP runtimes.
OpenMP tasks are also mapped to ULTs, but careful mecha-
nisms are in place to maintain a correct thread-task relationship
in order to satisfy the OpenMP semantics (e.g., tied tasks).

At this stage, BOLT shows decent performance compared
with several OS-level thread-based and ULT-based runtimes.
Unfortunately, at this stage, which we refer to as baseline,
BOLT underperforms in several cases as other ULT-based
runtimes do; it relies on low threading overheads of ULTs
but mostly ignores OpenMP-specific knowledge in the op-
timization space. In particular, massive thread parallelism
created by nested parallel regions stresses the scalability
of data management and thread synchronization operations,
diminishing performance gain by the lightweight nature of
the native ULTs. To tackle this scalability challenge under
nested parallelism, we first focus on the OpenMP specification
that enables efficient data reuse and two bottlenecks in thread
synchronization that have been overlooked in LLVM OpenMP;
these techniques are either known methods in the context
of OS-level thread-based systems or general optimizations,
while these performance issues are significant with lightweight
threads. We then investigate efficient and transparent support
for flat parallelism and ULT-based OpenMP thread-to-CPU
binding and propose new techniques that are specific to ULT-
based OpenMP runtimes.

B. Team-Aware Resource Management

Despite its abstract nature, the concept of OpenMP team
has important performance implications for nested parallelism
by promoting reuse and isolation. Let us first assume that only
flat parallelism is supported. In this case, the concept of team
is unnecessary since there is at most one active parallel region
at a time. Consequently, it is sufficient to reuse the same set
of threads to execute successive parallel regions. Reuse here
applies to the OpenMP thread descriptors that contain native
threads and the per-thread OpenMP-specific data. The set of
threads can also dynamically expand to account for variable
thread counts across parallel regions. In LLVM OpenMP
and BOLT, an OpenMP thread descriptor embeds a native
thread; it follows that reusing an OpenMP thread descriptor
allows reusing the same native thread to avoid expensive
fork-join calls. In order to support the OpenMP fork-join
execution model, barrier synchronization is used in LLVM
OpenMP instead. The same is achieved in BOLT by using
the join-revive Argobots pattern; this is a unique trait of
Argobots that allows joining threads without destroying them
(similar to a barrier synchronization) and later revive them to
execute a new parallel region.

This model is impractical for nested parallelism, however.
It is unfeasible to execute all parallel regions by the same
set of threads while maintaining parent-children dependencies
between regions, independence among sibling regions, and
region-local barrier synchronization. The notion of team sat-
isfies these needs and allows for optimizations. The isolation
of threads within the same team allows independent teams to
run in parallel and limits the scope of barrier synchronization
to team-local threads. The above global reuse model can also
be adopted at the team level. When a team finishes execut-
ing a parallel region, its corresponding data, which includes
OpenMP thread descriptors, can be reused for a subsequent
parallel region. Exploiting team-level optimizations is not
new but has been limited to leading OS-level thread-based
runtimes. This reuse method, called hot team [4], has been
adopted by Intel and LLVM OpenMP and saves not only
on thread management operations but also on team-level data
management and initialization (e.g., barrier-related data).

The original implementation of hot teams is limited to the
outermost parallel region by default, because the OS-level
thread is a precious system resource; since the number of
OS-level threads grows exponentially, keeping them alive can
rapidly reach the system limit. This is not an issue for ULT-
based runtimes since threads are managed in the user space.
Here the primary physical limit is memory but it can fit a
massive number of ULTs since their memory footprint is
relatively small (the largest object is stack, which is 4 MB
by default). As a result, the hot team optimization has even
more potential for ULT-based runtimes since caching ULTs
only consumes memory without wasting a system resource.

C. Scalability Optimizations

Shifting the threading layer of the original LLVM OpenMP
to ULTs reveals scalability bottlenecks that were not previ-
ously visible because the costs of managing OS-level threads
dwarfed them. These bottlenecks are related to accessing
shared data and the startup overhead of a parallel region that
we address as follows.

1) Scalable Shared Data Management: The first bottleneck
is related to how shared data within the runtime is protected. A
coarse-grained critical section was protecting several runtime
resources, including global thread and team descriptor pools,
which are used if teams are not cached, and global thread
IDs. Accessing this data is on the critical path of every
construction of a parallel region. This critical section also
serializes updates of thread counters that are used to adjust
the number of threads (e.g., as hinted by thread-limit-var).
This is a generic critical section contention issue, which
we alleviated with established contention-avoidance practices.
We divided the coarse-grained critical section into smaller
ones that protect distinct resources. Since it belongs to the
associated master thread, hot team data needs no protection,
which gets manipulated in a lockless manner. Thread counters
are kept consistent by using hardware atomic operations. These
optimizations eliminate most serialization.

4

2) Scalable Thread Startup: The second bottleneck is re-
lated to the startup phase of a parallel region where the master
thread distributes work to threads in the team. The baseline
join-revive model employs an O(N) distribution algorithm
that limits scalability under nested parallelism. This is a known
pattern that has been improved with O(logN) divide-and-
conquer algorithms such as done by Intel CilkPlus [23] and
Intel Threading Building Blocks [24]. LLVM OpenMP adopts
the same approach but only for taskloop, however. Thus, we
applied this model to the join-revive pattern by distributing
work in a binary tree manner until the number of revived
threads is one.

Our two optimizations drastically improve the scalability
of the baseline BOLT under nested parallelism. Nevertheless,
it underperforms in the case of flat parallelism. Across suc-
cessive parallel regions, native threads (i.e., ULTs) cached
by the hot team optimization are coordinated by ULT-based
synchronization that essentially relies on lightweight user-level
context switching. This ULT-based coordination method, how-
ever, performs worse than busy-waiting when no oversubscrip-
tion happens. The next section closely explores better thread
coordination strategies across parallel regions, a direction that
was completely overlooked by previous ULT-based runtimes.

D. Thread Coordination Across Successive Parallel Regions

With OS-level threads, even if the hot team eliminates
thread creation costs with OpenMP threads as we presented
in Section III-B, sleeping and awakening threads on every
parallel region invocation are costly since they involve expen-
sive OS-level context switching. Production OpenMP runtimes
by default enable an aggressive synchronization that keeps
finished OpenMP threads busy-waiting in order to save the
cost of waking up threads on creating the succeeding parallel
region. Nevertheless, busy-waiting is obviously harmful un-
der oversubscription cases because it essentially wastes CPU
resources. The OpenMP specification gives control to users
via a run-time interface, OMP WAIT POLICY, that hints at the
runtime the desired behavior of waiting threads with active

and passive keywords; the specification explains that active

implies busy-waiting, while passive sleep- or yield-based im-
plementations. Although the specification defines the behavior
as implementation defined, this wait policy is exploited by
leading OpenMP runtimes to alleviate overheads of parallel
region creation.4 This setting is known to significantly affect
the performance of flat and nested parallelism [18]; the active
policy minimizes the latency for a repeated, short, and single-
level parallel region, but it imposes immense overheads when
oversubscription happens (e.g., parallelism is nested). On the
other hand, with the passive policy, the latency is large under
flat parallelism.

4For example, with active, LLVM OpenMP 7.0 infinitely busy-waits for
the next parallel region; but if the total number of OpenMP threads is greater
than the number of hardware threads, sched yield() is called in the busy
loop. Under the passive policy, threads immediately sleep after finishing
their work; team reinvocation relies on a tree-based barrier using Pthreads
condition variables.

1 const int YIELD_INTERVAL = 1e6;
2 void omp_thread_func(...):
3 START_THREAD:
4 [...]; // run an implicit task (= work of OpenMP thread)
5 switch (omp_wait_policy):
6 case ACTIVE:
7 while (1):
8 if (is_next_team_invoked()):
9 goto START_THREAD; // restart a thread

10 if (count++ % YIELD_INTERVAL == 0):
11 yield_to_sched(); // avoid hang
12 case PASSIVE:
13 return; // immediately returns to a scheduler
14 case HYBRID:
15 while (1):
16 if (is_next_team_invoked()):
17 goto START_THREAD; // restart a thread
18 if (thread = pop_from_one_of_pools()):
19 // finish, return to a scheduler, and execute thread
20 return_to_sched_with_thread(thread);

Fig. 3. Pseudo code of wait policy implementation in BOLT. We omit
detailed flag management from this code. Here yield to sched() behaves as
preemption, which is necessary to avoid a dead lock with the active policy.

1) Static Wait Policy: A common misconception is that
the threading cost of ULTs is minuscule (e.g., as small as
synchronization based on busy-waiting). Indeed, the previous
ULT-based OpenMP runtimes have ignored the wait policy
and merely implemented a passive behavior relying on user-
level context switches. Nevertheless, we found that even with
lightweight ULTs, thread coordination algorithms indicated by
the wait policy have a large performance impact on flat and
nested parallelism because under no oversubscription busy-
waiting is more efficient than user-level context switches
containing several memory accesses. BOLT is aware of the
importance of flat parallelism and therefore employs both
active and passive strategies, which allow efficient execution
of flat parallelism if active is specified. Fig. 3 shows the
pseudo implementations of the wait policies in BOLT; under
the active policy a flag (is next team invoked()) is checked
in a busy loop (line 8), whereas with passive a thread finishes
immediately after its work to possibly schedule another ready
thread (line 13).

However, this static policy mechanism requires users to
prioritize the performance of either flat or nested parallelism.
The API proposal by Yan et al. [5], which allows the policy
change at runtime with omp set wait policy(), can alleviate
the current one-time black-and-white setting. However, it
imposes a burden on users to control optimal settings, which is
impractical for real-world complicated applications that consist
of both flat and nested parallelism.

2) Hybrid Wait Policy: To address this issue, we propose
a hybrid policy, a new ULT technique that encompasses
both strengths by executing the active and passive behaviors
alternately. This optimization comes from the observation that
both implementations are composed of busy loops; the active
implementation obviously contains busy-waiting, whereas with
passive, after the thread finishes, the scheduler enters a
busy loop to pop and execute the next ULT. The hybrid
implementation embeds the ULT pool operations in the thread
coordination code and checks a flag and availability of ULTs
alternately in a busy loop, as shown in Fig. 3. If a ULT
is successfully taken in this loop (line 18), the thread exits
and returns to the scheduler with the popped ULT, which
will be executed next (line 20). This hybrid strategy consists

5

of both the active and passive strategies; it works as active

with a pool-checking overhead (line 18) under flat parallelism,
while passive with a flag-checking overhead (line 16) under
oversubscription. Since any expensive operation is involved in
a busy loop to check a pool and a flag alternately, it performs
almost best in both flat and nested parallelism cases without
the programmers’ burden to choose the wait policy.

This hybrid technique is not applicable to OS-level thread-
based implementations since a kernel does not expose a
scheduling loop to users. Instead of a hybrid behavior, one
might suggest an adaptive strategy that dynamically switches
active and passive modes based on plausible metrics: for ex-
ample, total numbers of threads and parallel regions, depth of
nests, CPU loads, and real performance obtained by profiling.
However, such an adaptive technique is potentially harmful
because of the expensive wait policy change that requires
suspension and reactivation of OS-level threads. We note
that our hybrid technique has the least negative side effect
under the assumption of ULT scheduling; especially the hybrid
technique does not perform any context switching without
acquiring the next work unlike yield to sched() (line 11)
with active, which eliminates unnecessary context switches
that increase the latency in the thread restart path.

Unfortunately, neither the OpenMP specification nor the
proposal of extensions [5] contains a keyword that can be
mapped to this hybrid behavior. This paper uses a keyword
hybrid, while we simply suggest a keyword runtime or auto

to the specification, which allows a runtime to choose the best
algorithm (i.e., the hybrid algorithm in the case of BOLT).

E. Thread-to-Place Binding

In order to efficiently run a parallel program on modern hier-
archical multi-core CPUs, in addition to efficient execution of
parallel regions, exploitation of locality is essential. OpenMP
introduced the concept of thread binding, which allows users
to hint preferable thread affinity; this facilitates exploiting data
locality by mapping threads to the hardware topology and
by exploiting physical proximity among threads. Specifically,
OpenMP allows fine-grained affinity control via places; users
can define places that encapsulate sets of hardware threads,
and OpenMP threads can be bound to specific places according
to a given binding setting (bind-var). This thread-to-place
binding interface is straightforward to use for flat parallelism,
but it is not so trivial for nested parallelism. For instance, the
user can use the binding interface to carefully map threads in
a way that maximizes resource utilization. This solution, while
already cumbersome for the user, becomes impractical the
moment the thread count exceeds the number of processors or
the per-thread workload is irregular. In this case, dynamically
scheduling threads is more practical.

Dynamically moving threads can take place only within
one place, however. This creates a multidimensional trade-off
between data locality granularity (small places give more fine-
grained control), load balancing (larger places allow for better
utilization) and scheduling overheads (moving threads within
one place). The quest for the best trade-off favors ULT-based

Shared queues

Core 0

OS-level thread

Scheduler 0

Core 1

Scheduler 1

Core 2

Scheduler 2

OS-level thread OS-level thread
OpenMP thread

...

Place queues

...

(place 0: [0-1]) (place 1: [2-3])

Fig. 4. Place queues in BOLT. In addition to shared queues, Scheduler 1 can
access its own place queue (place 0), but not the other place queues.

runtimes, thanks to high-control and low-cost scheduling,
but remains completely unexplored since existing ULT-based
runtimes support only old OpenMP specifications. Whether
an OpenMP runtime fulfills the thread-to-place binding spec-
ification is implementation defined; thus, the baseline BOLT
remains standard-compliant but prohibits the user from the
corresponding optimizations. We believe this should not be
the case; that a ULT-based runtime can equip the user with
the same optimization tools as OS-level thread-based runtimes
do. In the following, we describe our binding support, which
is fully compliant with the specification.

1) ULT-Based Thread-to-Place Binding: OS-level thread-
based runtimes often rely on CPU masks to map threads to
places; the OS schedules threads only on CPU sets that threads
are allowed to run onto. This approach is not practical for ULT
scheduling because they are scheduled by using decentralized
thread queues. For a close mapping between places and thread
queues, we created the concept of place queue associated with
a place (i.e., a user-defined set of processors, or schedulers in
BOLT) as shown in Fig. 4. Since only schedulers associated
with a place have access to a corresponding place queue,
ULTs bound to the place queue can be executed among
these limited schedulers. By pinning schedulers in BOLT to
hardware threads, ULTs are virtually bound to specific core
sets. Places are immutable once defined, so BOLT does not
need to create and destroy place queues dynamically; thus, the
additional overhead to support places is negligible.

2) The Problem with Binding Policy Inheritance: The pre-
vious step allows BOLT users to control thread mapping as
they would do with widely used OpenMP runtimes. Unfor-
tunately, the deterministic nature of this binding interface
constrains thread scheduling; it ignores processor utilization
at runtime and can lead to load imbalance. We believe that
to approach the optimal trade-off, a promising strategy is
to combine tight binding policies for the outermost parallel
region (to promote data locality) with loose binding policies
for inner regions to allow threads more freedom to move and
exploit dynamic load balancing. This strategy maps cleanly
to the BOLT internal thread queue and scheduling system,
but there is an obstacle in the specification. If the binding
policy for the outermost parallel region is set, the inner binding
policy either inherits the parent region’s policy if the user
does not set it or takes the user-chosen policy. In both cases,
binding is always enforced onto the inner parallel regions,
which prohibits dynamic scheduling.

To address this issue, we suggest an extension to the

6

1 #pragma omp parallel for num_threads(L)
2 for (int i = 0; i < L; i++)
3 #pragma omp parallel for num_threads(N)
4 for (int j = 0; j < N; j++)
5 empty(i, j); // no computation

(a) Kernel of the microbenchmark. N is the number of cores.

100 101 102

Outer loop count (L)

10-5

10-4

10-3

10-2

10-1

Ex
ec

ut
io

n
tim

e
[s]

BOLT (baseline)
+ Team-aware management
++ Scalable data management
+++ Scalable thread startup

++++ Bind=spread
+++++ Bind=spread,unset
++++++ Hybrid policy
Argobots

(b) Performance of the microbenchmark on Skylake.
Fig. 5. Microbenchmark that evaluates overheads of nested parallel regions.

specification to support a new bind-var keyword, unset, which
literally unsets bind-var; technically, it sets bind-var and
place-partition-var to the default ones, while in BOLT the
default bind-var is no thread binding. With this keyword,
we can specify the strategy described above by, for instance,
setting OMP PROC BIND to spread,unset. With this extension,
BOLT is capable of dynamic scheduling through random
work-stealing when binding is unset. We believe this keyword
is also useful with OS-level thread-based implementation for
dynamic load balancing.

F. Performance Breakdown and Analysis

The preceding sections described several implementation
aspects that affect the performance of parallel regions in
flat and nested parallelism regimes but did not quantify the
individual contributions. This section provides a breakdown
analysis using simple microbenchmarks that were run on a
56-core Intel Skylake server (detailed experimental setting is
provided in Section IV).

1) Performance Breakdown Analysis: To evaluate BOLT
under nested parallelism, we first used a microbenchmark that
stresses the overheads of nested parallel regions, as shown in
Fig. 5a. We set N to the number of cores (i.e., 56) and ran
this microbenchmark with different values of L. Fig. 5b shows
the results following an incremental bottleneck elimination
approach; at each step, the optimization being applied is the
one that eliminates the major bottleneck at that step (which
does not necessarily follow the same order as the optimization
descriptions above). We set OMP WAIT POLICY to passive by
default, which is beneficial for nested parallelism.

We found that team construction and destruction take more
than 92% of the total execution time on the critical path with
L = 56. As a result, the hot team optimization (Section III-B)
can significantly reduce the team management cost (Team-
aware management) and improves the execution time by
roughly 10x. The next most significant bottleneck is con-
tention for the coarse-grained critical section, which consumes
13% of the execution time when L is 56. By adopting the
Scalable data management optimization (Section III-C1),

active passive hybrid
10-6

10-5

10-4

10-3

10-2

10-1

100

Ex
ec

ut
io

n
tim

e
[s]

BOLT (opt)
GOMP (close, nobind)
IOMP (nobind, nobind)
LOMP (nobind, nobind)

MPC
OMPi
Mercurium

(a) Flat Parallel Regions

active passive hybrid
10-6

10-4

10-2

100

102

104

Ex
ec

ut
io

n
tim

e
[s]

BOLT (opt)
BOLT (opt, nest=F)
GOMP (nobind, true)
IOMP (nobind, nobind)

LOMP (nobind, nobind)
MPC
OMPi
Mercurium

(b) Nested Parallel Regions
Fig. 6. Performance of the microbenchmarks that evaluate the effect of wait
policy on Skylake.

contention is significantly reduced and the benefits are pro-
portional to the size of the outer parallel region L. Binary
thread startup (Section III-C2) shortens the critical path by
reducing the workload on the master thread (Scalable thread
startup), which improves performance especially with smaller
L. Merely setting affinity—set to spread in this example—
does not improve performance (Bind=spread) because, as
discussed in Section III-E1, the affinity setting is inherited
by the inner parallel regions and incurs load imbalance be-
cause of the loss of scheduling flexibility. Giving scheduling
freedom to the inner nested level by setting spread,unset

(Section III-E2) improves CPU utilization by reducing load
imbalance (Bind=spread,unset). The hybrid wait policy pre-
sented in Section III-D2 improves performance with smaller
L because of its active behavior, while it shows the least
performance degradation with larger L (Hybrid policy).

We also compared the optimized BOLT with the pure
Argobots library, which we consider as the upper bound on
performance. We created a microbenchmark that is directly
parallelized with Argobots in the same way as done with
the optimized BOLT; we mimicked BOLT’s scheduling and
thread management (e.g., affinity and team-aware resource
management) but removed OpenMP function calls and omitted
other unused OpenMP features for this microbenchmark (e.g.,
initialization of task queues and management of thread IDs).
Fig. 5b indicates that the optimized BOLT incurs up to 23%
overheads compared with Argobots (Argobots in the figure).
We think any further performance improvement beyond this
point must involve improving Argobots itself.

2) Wait Policy and Performance: To assess the trade-off
of the wait policy, we evaluated the performance of flat and
nested parallelism with both the active and passive policies.
We used the optimized BOLT (Bind=spread,unset in Fig. 5b).
In addition to the widely used OpenMP implementations
(GCC, Intel, and LLVM OpenMP), we evaluated three ULT-
based OpenMP runtimes: MPC [9], OMPi [8], and Mer-

7

curium [25]. Section IV includes the details of the OpenMP
runtimes we evaluated. We note that these ULT-based runtimes
employ only the passive strategy (i.e., no busy-waiting). We
tuned the affinity settings of GCC, Intel, and LLVM OpenMP
as done in Section IV-A.

Fig. 6a shows the overheads of a single parallel region
creating 56 threads doing no computation on the Intel Skylake
processor. We show the best affinity settings for GCC, Intel,
and LLVM OpenMP (GOMP, IOMP, and LOMP) in the
figures; the first affinity was set for active and the other for
passive. Fig. 6a shows that BOLT with passive is faster
than GOMP, IOMP, and LOMP with passive, thanks to
lightweight ULTs, while it is slower than IOMP and LOMP
with active because their coordination algorithms based on
busy-waiting are more efficient than is the passive algorithm
relying on user-level context switching. BOLT with active

performs as good as do IOMP and LOMP. The previous ULT-
based OpenMP runtimes (MPC, OMPi, and Mercurium)
show higher overheads than do the OpenMP implementations
with OS-level threads with active, indicating the importance
of the active wait policy for efficient support of flat parallelism
even with lightweight ULTs.

Fig. 6b shows the performance of nested parallel regions
creating 56 threads at each level. GOMP suffers from im-
mense thread management overheads, diminishing the perfor-
mance difference between active and passive. IOMP and
LOMP in this case significantly degrade performance with
active because busy-waiting delays execution of other threads
that have real work. BOLT shows the same performance
tendency, but is faster than the other OpenMP runtimes except
MPC; in Fig. 6b, MPC shows the best performance because
the implementation of MPC does not allow oversubscription
and completely serializes inner parallel regions. BOLT can
achieve better performance by disabling nested parallelism
(BOLT (nest=F)). In Section IV-A we discuss the performance
penalty of aggressive serialization.

These results demonstrate that the performance of flat and
nested parallelism is sensitive to the wait policy. BOLT with
hybrid in both cases shows almost the best performance,
proving the efficacy of the hybrid algorithm which eliminates
a burden to manually tune the wait policy but maintains high
performance under both flat and nested parallelism.

IV. EVALUATION

In this section, we compare the performance of BOLT
with six other OpenMP runtimes using carefully crafted
microbenchmarks and two real-world N-body and chemistry
applications that exhibit nested parallelism. We ran experi-
ments on the heavily threaded Intel Skylake and KNL systems
described in Table I. Since not every OpenMP runtime found
in literature has a publicly available or usable implementation,
we present results only with runtimes that we could collect and
run. The OS-level thread-based category contains the GCC
OpenMP [1], Intel OpenMP [2], and LLVM OpenMP [3]
runtimes that ship with GCC 8.1, Intel 17.2.174 (17.0.4 on

TABLE I
EXPERIMENTAL ENVIRONMENT

Name Skylake KNL
Processor Intel Xeon Platinum 8180M Intel Xeon Phi 7230
Architecture Skylake Knights Landing
Frequency 2.5 GHz 1.3 GHz
of sockets 2 1
of cores 56 (28 × 2) 64
of HWTs 112 (56 × 2) 128 (64 × 2)
Memory 396 GB 128 GB
OS Red Hat 7.4 Red Hat 7.4

KNL), and Clang/LLVM 7.0 [26], respectively. The ULT-
based category consists of MPC 3.3.0 [9], OMPi 1.2.3 [8]
with psthreads 1.0.4 [27], and Mercurium 2.1.0 [25] with
Nanos++ 0.14.1.5 BOLT does not have its own compiler, so we
compiled programs with the Intel compiler and replaced the
OpenMP library with BOLT by modifying LD LIBRARY PATH.

All programs were compiled with -O3. To evaluate nested
parallelism, we set OMP NESTED to true. For a fair comparison,
we enabled nested hot teams for LLVM and Intel OpenMP for
efficient resource management. In our evaluation, the hybrid
policy was enabled for BOLT. For other runtimes, we followed
the common practice; we set OMP WAIT POLICY to active if
nested parallelism is not used while disabling the busy-wait
configuration under any nested parallelism, an approach that is
overall beneficial as discussed in Section III-F2. The optimized
BOLT includes all the optimizations of Section III with
the affinity setting of OMP PROC BIND=spread,unset, which
performed best in the following experiments. We present
the results as the arithmetic mean of ten runs with a 95%
confidence interval shown as error bars. We note that some
bars are hardly visible because of small error values.

A. Microbenchmarks

We first evaluated two microbenchmarks that reflect cases
where the efficiency of nested parallel regions impacts perfor-
mance. Unlike what we used in Section III-F, the computation
is added in order not to let merely aggressive serialization be
the best optimization. The first case is the microbenchmark
shown in Fig. 9a. When L is less than the number of cores
(N), parallelizing only the inner or the outer parallel loop
cannot utilize all the available cores. We changed the outer
loop count L and evaluated the performance.

The second case is a program that has unbalanced inner
parallel loops, as shown in Fig. 9b. Since the amount of
work of the inner loop is uneven, load imbalance occurs if
only the outer loop is parallelized. In theory, parallelizing
only the inner loop achieves performance as good as that of
nested parallelism, although disabling outermost parallelism is
difficult in practice because outer parallel loops often contain
other computations. This benchmark has a parameter α (A in
Fig. 9b) to control the degree of imbalance. Let N be a number

5We could not find the source code of Omni/ST [7] and NanosCompiler [6].
The source code of ForestGOMP [11] is available, but we did not include
it because we could not compile and run it in our environment. The latest
libKOMP [10] (https://gitlab.inria.fr/openmp/libkomp) focuses on tasking and
no longer maps OpenMP threads to ULTs, so we exclude it in our evaluation.

8

100 101 102

Outer loop count (L)

10-4

10-2

100

102

104
Ex

ec
ut

io
n

tim
e

[s]
BOLT (baseline)
BOLT (opt)
GOMP (true)
GOMP (TL=56, true)
GOMP (dyn, close)
GOMP (taskloop, true)
Ideal
Ideal (outer)

(a) GCC OpenMP (GOMP)

100 101 102

Outer loop count (L)

10-5

10-4

10-3

10-2

10-1

100

Ex
ec

ut
io

n
tim

e
[s]

BOLT (baseline)
BOLT (opt)
LOMP (spread)
LOMP (TL=896, true)
LOMP (dyn, true)
LOMP (taskloop, nobind)
Ideal
Ideal (outer)

(b) LLVM OpenMP (LOMP)

100 101 102

Outer loop count (L)

10-5

10-4

10-3

10-2

10-1

100

Ex
ec

ut
io

n
tim

e
[s]

BOLT (baseline)
BOLT (opt)
IOMP (spread)
IOMP (TL=896, true)
IOMP (dyn, true)
IOMP (taskloop, spread)
Ideal
Ideal (outer)

(c) Intel OpenMP (IOMP)

100 101 102

Outer loop count (L)

10-5

10-4

10-3

10-2

10-1

100

101

Ex
ec

ut
io

n
tim

e
[s]

BOLT (baseline)
BOLT (opt)
MPC
OMPi
Mercurium
Ideal
Ideal (outer)

(d) ULT-based OpenMP
Fig. 7. Performance of the microbenchmark that has insufficient parallelism on Skylake.

10-1 100 101

Alpha (A)

10-4

10-2

100

102

104

Ex
ec

ut
io

n
tim

e
[s]

BOLT (baseline)
BOLT (opt)
GOMP (spread)
GOMP (TL=56, spread)
GOMP (dyn, nobind)
GOMP (taskloop, close)
Ideal
Ideal (outer)

(a) GCC OpenMP (GOMP)

10-1 100 101

Alpha (A)

10-4

10-3

10-2

10-1

100

Ex
ec

ut
io

n
tim

e
[s]

BOLT (baseline)
BOLT (opt)
LOMP (close)
LOMP (TL=1792, close)
LOMP (dyn, close)
LOMP (taskloop, true)
Ideal
Ideal (outer)

(b) LLVM OpenMP (LOMP)

10-1 100 101

Alpha (A)

10-4

10-3

10-2

10-1

100

Ex
ec

ut
io

n
tim

e
[s]

BOLT (baseline)
BOLT (opt)
IOMP (close)
IOMP (TL=336, spread)
IOMP (dyn, close)
IOMP (taskloop, close)
Ideal
Ideal (outer)

(c) Intel OpenMP (IOMP)

10-1 100 101

Alpha (A)

10-4

10-3

10-2

10-1

100

101

Ex
ec

ut
io

n
tim

e
[s]

BOLT (baseline)
BOLT (opt)
MPC
OMPi
Mercurium
Ideal
Ideal (outer)

(d) ULT-based OpenMP
Fig. 8. Performance of the microbenchmark that has unbalanced inner loop parallelism on Skylake.

1 #pragma omp parallel for num_threads(L)
2 for (int i = 0; i < L; i++)
3 #pragma omp parallel for num_threads(N / 2)
4 for (int j = 0; j < N / 2; j++)
5 computation(i, j, 20000 /* cycles */);

(a) Insufficient parallelism

1 #pragma omp parallel for num_threads(N)
2 for (int i = 0; i < N; i++) {
3 int c = 20000 * N * pow(i + 1, A) / (pow(1, A) + ... + pow(N, A));
4 #pragma omp parallel for num_threads(N)
5 for (int j = 0; j < N; j++)
6 computation(i, j, c /* cycles */);
7 }

(b) Unbalanced inner loop parallelism
Fig. 9. Kernels of the microbenchmarks that evaluate nested parallel regions.

of cores. The computation size of the ith outer loop iteration
is set to Wi cycles, where Wi is calculated as follows:

Wi = 20000 ·N · (i+ 1)α∑N
j=1 j

α
.

Wi is 20, 000 when α is 0 and gets unbalanced with larger α.
By definition, the total amount of work is always 20000 · N
regardless of α. We changed α from 0.1 to 10.

Each measurement calculates the average execution time
of the kernel repeated for three seconds after a one-second
warm-up. To evaluate the common workarounds in OpenMP,
in addition to the default setting, we measured the performance
of the dynamic adjustment of thread counts (i.e., dynamic-var
(dyn) and thread-limit-var (TL)). For thread-limit-var, we
tried several numbers (N , 2N , 4N , 6N , 8N , 12N , 16N , and
32N). Thread affinity impacts performance, so we evaluated
four settings—true, close, and spread set OMP PROC BIND to
true, close, and spread, respectively, and setting OMP PLACES

to cores, and nobind, which unsets those variables. Because
of space limits, although we tried all the combinations, we
show the performance of the fastest series6.

Fig. 7 and Fig. 8 show the performance of BOLT, GCC,
Intel, and LLVM OpenMP with several settings and three ULT-
based OpenMP systems. We split charts for better readability,
so the results of BOLT are identical among the four charts.
BOLT (baseline) denotes the baseline BOLT, and BOLT (opt)
includes all the optimizations. Ideal and Ideal (outer) show
the theoretical maximum performance if all the parallelism is
exploited and only the outer loop is parallelized, respectively.
The results indicate that BOLT (opt) overall performs better
than BOLT (baseline) and the other OpenMP systems. We
note that MPC does not allow oversubscription, so it serializes
inner parallelism except L = 2 in Fig. 7. This result shows
that such an aggressive serialization adopted by MPC fails to
exploit parallelism and, at maximum, achieves performance
as good as that of Ideal (outer). We note that OpenMP
threads in BOLT is as efficient as or even faster than OpenMP
tasks in GCC, Intel, and LLVM OpenMP; taskloop shows the
performance of the microbenchmarks in which we replaced the
inner parallel loop with taskloop.

To illustrate the benefits of nested parallelism in real-world
cases, we chose two applications, KIFMM [28] and Qbox [29],
for evaluation. They are good examples of nested parallel
regions in real-world code; outer parallel loops appear in
application codes, and inner parallel loops are in external math
libraries. Our evaluation used Intel OpenMP for comparison

6Specifically, since one series contains multiple results at different X values,
we chose one that has the smallest geometric mean of execution time.

9

0

1

2

3
NP = 12 + 100,000 points NP = 12 + 200,000 points NP = 12 + 500,000 points

0

1

2

3

R
el

at
iv

e
pe

rfo
rm

an
ce

 (
B

O
LT

+
1t

hr
ea

d
=

 1
)

NP = 14 + 100,000 points NP = 14 + 200,000 points NP = 14 + 500,000 points

100 101 102

of MKL threads

0

1

2

3
NP = 16 + 100,000 points

100 101 102

of MKL threads

NP = 16 + 200,000 points

100 101 102

of MKL threads

NP = 16 + 500,000 points

BOLT (opt)

IOMP (nobind)

IOMP (true)

IOMP (close)

IOMP (spread)

IOMP (dyn)

Fig. 10. Performance of the traversal in the upward phase of KIFMM on Skylake.

1 for (int i = 0; i < max_levels; i++)
2 #pragma omp parallel for
3 for (int j = 0; j < nodecounts[i]; j++) {
4 [...];
5 dgemv(...); // dgemv() creates a parallel region.
6 }

Fig. 11. Kernel of the upward phase in KIFMM; dgemv() is parallelized with
OpenMP’s parallel for in MKL.

because 1) it performs best among the existing OpenMP
runtimes, and 2) its runtime and compiler are expected to
perform best on Intel machines with Intel MKL.

B. KIFMM

KIFMM is a kernel-independent fast multipole method that
is an efficient solver of N-body problems [30]. Our evaluation
used its highly optimized implementation [28]. The phases up-
ward and downward are time-consuming phases that have node
traversals consisting of OpenMP-parallelized loops calling
BLAS routine dgemv(), as presented in Fig. 11. Major BLAS
implementations including Intel MKL and OpenBLAS provide
OpenMP-parallelized implementations, so applications devel-
opers might want to exploit nested parallelism especially when
loop counts of outer parallel loops are small.

We changed two factors in KIFMM to evaluate the perfor-
mance of nested parallelism. The first is the number of points
(i.e., N in N-body), which affects nodecounts[i] in Fig. 11;
larger N creates more nodes at each level. When the input
contains more points, inner loop parallelism becomes less
important because outer parallelism is adequate. The second
factor is NP, a parameter determining the accuracy of outputs.
It affects the input matrix size of dgemv(); larger NP requires
larger matrix-vector multiplication. Parallelizing small dgemv()
does not perform well because of threading overheads and bad
locality, so nested parallelism can be more efficiently exploited
with larger NP. We artificially changed these input parameters
and evaluated the effectiveness of nested parallelism. We used
the input following the Plummer model. We also manually
revectorized code with AVX-512, where the outdated SSE
vectorization was embedded. We used OpenMP-parallelized
Intel MKL for the BLAS library. Since it assumes Pthreads
as a native thread, a few functions in Intel MKL create, use,

and destroy TLS via the OS-level thread API (e.g., pthread -

specific instead of omp threadprivate) or implement their
own synchronization algorithms with non-OpenMP functions
(e.g., a hand-written barrier instead of omp barrier); we
overrode these functions to correctly run dgemv() on BOLT.
We executed KIFMM ten times and calculated speedups of
the upward’s traversal with different MKL NUM THREADS while
setting OMP NUM THREADS to 56. In addition to different affinity
settings, we measured the performance of dyn by setting
OMP DYNAMIC to true and letting the runtime decide the number
of OpenMP threads.

Fig. 10 shows the relative performance of the traversal in
the upward phase, where the baseline is the performance of
BOLT with one MKL thread; the performance obtained by
parallelizing only the outer loop is the result with a single
MKL thread. Fig. 10 indicates that nested parallelism con-
tributes to overall performance improvement, and in all cases
BOLT achieves the best performance with a certain number
of MKL threads, while the excessive increase of inner threads
enlarges threading overheads and degrades performance. As
we increase the number of points (from left to right in Fig. 10),
the performance improvement gets small because the outer
loop parallelism becomes sufficiently large. On the other hand,
larger NP increases the granularity of dgemv(), emphasizing
larger benefits of nested parallelism. Importantly, if the number
of MKL threads is 1, the performance of BOLT is the same as
that of Intel OpenMP, showing that BOLT has no performance
penalty for flat parallelism compared with Intel OpenMP.

C. Qbox

Qbox is a first-principles molecular dynamics code [29]
supporting both intranode parallelism with OpenMP and in-
ternode parallelism with MPI. We chose the implementation
in the CORAL benchmark with the Gold benchmark, which
computes the electronic structure of gold atoms. We focus
on a fast Fourier transform (FFT) phase in Qbox that creates
nested parallel regions. Qbox contains several FFT opera-
tions in the kernel; in the Gold benchmark, 3D FFT is the
most time-consuming among them. With OpenMP-parallelized

10

0
1
2
3
4

64 atoms + 16 MPI processes 96 atoms + 16 MPI processes 128 atoms + 16 MPI processes

0
1
2
3
4

R
el

at
iv

e
pe

rfo
rm

an
ce

 (
B

O
LT

+
1t

hr
ea

d
=

 1
)

64 atoms + 32 MPI processes 96 atoms + 32 MPI processes 128 atoms + 32 MPI processes

100 101 102

of FFTW threads

0
1
2
3
4

64 atoms + 48 MPI processes

100 101 102

of FFTW threads

96 atoms + 48 MPI processes

100 101 102

of FFTW threads

128 atoms + 48 MPI processes

BOLT (opt)

IOMP (nobind)

IOMP (true)

IOMP (close)

IOMP (spread)

IOMP (dyn)

Fig. 12. Performance of the 3D FFT in the FFT backward phase on KNL. The range of single-threaded execution time per iteration is from 30 to 200
milliseconds.

1 #pragma omp parallel for
2 for (int i = 0; i < num / nprocs; i++)
3 // fftw_execute() internally creates a parallel region.
4 fftw_execute(plan_2d, ...);

Fig. 13. Kernel of the 3D FFT in Qbox with a 2D FFTW plan. The single-
threaded execution time per iteration is about 0.8 milliseconds.

FFTW 3.3.8 [31], Qbox offers two ways to parallelize 3D
FFT: one is executing a single plan that performs 3D FFT
in FFTW3, and the other is running a parallel loop invoking
2D FFTs. We found that FFTW3 internally creates parallel
regions for each dimension, so parallel regions are nested in
both of the 2D and and 3D FFT cases. Since FFTW3 provides
only one variable to control the number of threads, we cannot
flexibly control parallelism in the 3D FFT case. We therefore
evaluated the 2D FFT case.

Fig. 13 presents the kernel of the 3D FFT in Qbox. The inner
OpenMP parallel loop calls fftw execute(), which executes
a 2D FFT. We changed two parameters to evaluate the nested
parallelism. The first one is the number of MPI processes. As
implied in Fig. 13, the outermost dimension of the 3D FFT is
distributed over MPI processes, so the outer loop parallelism
is reduced by increasing MPI processes, making the inner
loop parallelism more important for utilizing all cores. The
second parameter is the number of atoms, which changes num

in Fig. 13; larger input having more atoms increases num,
rendering nested parallelism less significant. We note that the
size of the 2D FFT is independent of these parameters.

For evaluation, we extracted the FFT kernel from the
Qbox code and simulated its performance by changing the
outer loop count according to values we obtained by running
Qbox. We created optimized wisdom files on KNL with
FFTW PATIENT for all combinations of numbers of FFTW
threads and OpenMP settings and used the obtained highly
optimized plans. The 2D FFT internally creates two-level
nested parallelism in FFTW3. To avoid an excessively fine-
grained decomposition, we disabled the third-level parallelism
by setting OMP MAX ACTIVE LEVEL to 2. The Intel OpenMP
settings are the same as for KIFMM. We set OMP NUM THREADS

to 64 and changed the number of FFTW threads.

Fig. 12 shows the relative performance of the 3D FFT in
the backward phase. The baseline is the performance of BOLT
with one FFTW thread. Fig. 12 demonstrates that only BOLT
can exploit nested parallelism and improve performance. This
improvement is more significant with fewer atoms and more
MPI processes, indicating that exploiting nested parallelism is
important for strong scaling, which is increasingly demanded
for massively parallel hardware. The result also shows that
BOLT outperforms the others; the autotuning process gener-
ates efficient plans for the lightweight OpenMP runtime.

V. RELATED WORK

ULTs in OpenMP. Before OpenMP 3.0, OpenMP sup-
ports only threads as parallel units, so lightweight ULTs
for OpenMP threads have been intensively explored to par-
allelize multilevel, recursive, or dynamic parallel programs
with OpenMP. NanosCompiler [6] and Omni/ST [7] are
early studies proposing ULT-mapping of OpenMP threads;
however, they lack implementation details beyond the initial
concept. As OpenMP evolved, several ULT-based OpenMP
runtimes sought for efficient scheduling over ULTs for nested
parallelism. The OMPi system [8] adopted a hierarchical
scheduling algorithm to execute innermost threads on close
cores, in order to improve locality [32]. ForestGOMP [11], an
OpenMP runtime library over a lightweight threading library
called Marcel [33], adopted a BubbleSched scheduler, which
is a NUMA-aware hierarchical scheduling policy based on
hardware locality information [34]. Our evaluation shows that
OpenMP’s thread affinity supported in the latest OpenMP
standard with our proposal unset can realize thread affinity
over ULTs in an efficient, transparent, and flexible manner.

Recent OpenMP studies using ULTs have focused on issues
other than nested parallel regions. libKOMP [10], OpenMP
over Qthreads [35], and OmpSs [36] utilized ULTs for efficient
task parallelism, although their mapping of OpenMP threads
are different; libKOMP mapped OpenMP threads to ULTs,
and Qthreads’ work mapped them to OS-level threads. OmpSs
radically stops supporting parallel regions to focus on its
own task-oriented parallel programming model, while their

11

compiler, Mercurium [25], keeps an OpenMP-compatible op-
tion. Several researchers tackled the interoperability issue. The
developers of MPC [9] integrated their ULT-based OpenMP
runtime with their MPI implementation. Some work mapped
OpenMP threads to ULTs for distributed programming models,
for example, OpenMP over Charm++ [37], [38], although it
failed to strictly follow the OpenMP semantics since OpenMP
is thoroughly designed for a shared-memory architecture.

Overall, these OpenMP parallel systems might secondarily
achieve good performance of nested parallel regions, while to
the best of our knowledge they lacked further improvements to
efficiently process nested parallel regions, leaving the perfor-
mance suboptimal and often worse than the leading OS-level
thread-based runtimes (e.g., Intel and LLVM OpenMP). BOLT
employs several optimizations to fully exploit lightweight
ULTs and presents the lowest overheads of flat and nested
parallel regions. We believe that our techniques are helpful
for existing ULT-based systems to improve the performance of
most OpenMP applications since large portion of real-world
OpenMP programs are parallelized by parallel regions.

ULTs in Parallel Programming Models. Several high-
level parallel programming models, such as Cilk [39], Cilk-
Plus [23], Charm++ [40], and X10 [41], have only an abstract
task as a parallel work unit, in order to leave room for
implementing it as a ULT. These parallel systems do not
critically suffer from the oversubscription issue because the
number of OS-level threads is constant or easily adjustable
during execution. OpenMP, however, exposes two types of
parallel units: thread and task. As their names imply, thread
and task are typically implemented with an OS-level thread
and a ULT in many OpenMP implementations. This work
shows that, as high-level programming models do, mapping
parallel units to ULTs can exploit nested parallelism, while
BOLT coexists with OpenMP-parallelized software resources.

Interoperability with Parallel Libraries. In a broader
sense, our work tries to address the interoperability issue of
multiple parallelized components. A number of studies, such
as Lithe [42] and DoPE [43], have proposed low-level abstract
systems designed to encapsulate several parallel runtimes and
supervise them uniformly. These abstracted runtime layers
essentially lose semantics in the original parallel programming
models, and hence achieving optimal performance is difficult.
Some studies have focused on the interoperability of OpenMP
and other threads [5], [44]. Our work focuses solely on the
interoperability issue within OpenMP.

VI. CONCLUDING REMARKS

We presented in this paper a ULT-based OpenMP runtime,
BOLT, that is aimed at production use by offering modern
OpenMP support, unprecedented efficiency for nested paral-
lelism support, and flat parallelism support that competes with
leading production runtimes. The design of BOLT resulted
from an in-depth investigation of implementation aspects as
well as OpenMP specification key concepts to drive perfor-
mance optimizations. We also discovered some specification
aspects that limit optimization opportunities in ULT-based

runtimes. We showed that the previous ULT-based OpenMP
implementations lack efficient support for nested parallel re-
gions while providing outdated OpenMP specification support.
The microbenchmarks show that BOLT achieves better perfor-
mance of nested parallel regions than do both the widely used
OS-level thread-based OpenMP runtimes and the state-of-the-
art ULT-based runtimes.

This study heavily focused on traditional parallel region-
type of execution but left other aspects, such as support for
tasks and accelerators, in the context of ULTs as future work.
This work solely focuses on OpenMP and thus does not
integrate our techniques into non-OpenMP systems although
some of our techniques are generally applicable; for example,
our hybrid-wait policy should be beneficial for ULT-based
parallel systems that have parallel loop abstractions. Hence,
another direction of our future work is to evaluate the efficacy
of these techniques on other ULT-based parallel systems.

ACKNOWLEDGMENT

This research was supported by the Exascale Computing
Project (17-SC-20-SC), a collaborative effort of the U.S.
Department of Energy Office of Science and the National
Nuclear Security Administration, in particular its subproject
on Scaling OpenMP with LLVm for Exascale performance
and portability (SOLLVE). We gratefully acknowledge the
computing resources provided and operated by LCRC and
JLSE at Argonne National Laboratory. This material is based
upon work supported by the U.S. Department of Energy, Office
of Science, under Contract DE-AC02-06CH11357.

REFERENCES

[1] D. Novillo, “OpenMP and automatic parallelization in GCC,” in Pro-
ceedings of the GCC Developers’ Summit, June 2006.

[2] Intel OpenMP Runtime Library. https://www.openmprtl.org/.
[3] OpenMP®: Support for the OpenMP Language. https://openmp.llvm.

org/.
[4] X. Tian, J. P. Hoeflinger, G. Haab, Y.-K. Chen, M. Girkar, and S. Shah,

“A compiler for exploiting nested parallelism in OpenMP programs,”
Parallel Computing, vol. 31, no. 10-12, pp. 960–983, Oct. 2005.

[5] Y. Yan, J. R. Hammond, C. Liao, and A. E. Eichenberger, “A proposal
to OpenMP for addressing the CPU oversubscription challenge,” in
Proceedings of the 12th International Workshop on OpenMP, ser.
IWOMP ’16, Oct. 2016, pp. 187–202.

[6] G. Marc, A. Eduard, M. Xavier, L. Jesús, N. Nacho, and O. José,
“NanosCompiler: Supporting flexible multilevel parallelism exploitation
in OpenMP,” Concurrency: Practice and Experience, vol. 12, no. 12,
pp. 1205–1218, Oct. 2000.

[7] Y. Tanaka, K. Taura, M. Sato, and A. Yonezawa, “Performance evalua-
tion of OpenMP applications with nested parallelism,” in Proceedings of
the Fifth International Workshop on Languages, Compilers, and Run-
Time Systems for Scalable Computers, ser. LCR ’00, May 2000, pp.
100–112.

[8] P. E. Hadjidoukas and V. V. Dimakopoulos, “Support and efficiency
of nested parallelism in OpenMP implementations,” Concurrent and
Parallel Computing: Theory, Implementation and Applications, pp. 185–
204, 2008.

[9] M. Pérache, H. Jourdren, and R. Namyst, “MPC: A unified parallel
runtime for clusters of NUMA machines,” in Proceedings of the 14th
International European Conference on Parallel Processing, ser. Euro-Par
08, Aug. 2008, pp. 78–88.

[10] F. Broquedis, T. Gautier, and V. Danjean, “libKOMP, an efficient
OpenMP runtime system for both fork-join and data flow paradigms,”
in Proceedings of the Eighth International Conference on OpenMP, ser.
IWOMP ’12, June 2012, pp. 102–115.

12

[11] F. Broquedis, N. Furmento, B. Goglin, P.-A. Wacrenier, and R. Namyst,
“ForestGOMP: An efficient OpenMP environment for NUMA architec-
tures,” International Journal of Parallel Programming, vol. 38, no. 5,
pp. 418–439, Oct. 2010.

[12] S. Seo, A. Amer, P. Balaji, C. Bordage, G. Bosilca, A. Brooks, P. Carns,
A. Castelló, D. Genet, T. Herault, S. Iwasaki, P. Jindal, L. V. Kalé,
S. Krishnamoorthy, J. Lifflander, H. Lu, E. Meneses, M. Snir, Y. Sun,
K. Taura, and P. Beckman, “Argobots: A lightweight low-level threading
and tasking framework,” IEEE Transactions on Parallel and Distributed
Systems, vol. 29, no. 3, pp. 512–526, Oct. 2017.

[13] A. Castelló, R. Mayo, K. Sala, V. Beltran, P. Balaji, and A. J. Peña, “On
the adequacy of lightweight thread approaches for high-level parallel
programming models,” Future Generation Computer Systems, vol. 84,
pp. 22–31, July 2018.

[14] A. Castelló, S. Seo, R. Mayo, P. Balaji, E. S. Quintana-Ortı́, and A. J.
Peña, “GLTO: On the adequacy of lightweight thread approaches for
OpenMP implementations,” in Proceedings of the 46th International
Conference on Parallel Processing, ser. ICPP ’17, Aug. 2017, pp. 60–69.

[15] H. M. Bücker, A. Rasch, and A. Wolf, “A class of OpenMP applications
involving nested parallelism,” in Proceedings of the 2004 ACM Sympo-
sium on Applied Computing, ser. SAC ’04, Mar. 2004, pp. 220–224.

[16] OpenMP Architecture Review Board, “OpenMP Application Program
Interface Version 4.5,” Nov. 2015.

[17] ——, “OpenMP Application Program Interface Version 5.0,” Nov. 2018.
[18] C. Iancu, S. Hofmeyr, F. Blagojević, and Y. Zheng, “Oversubscription

on multicore processors,” in Proceedings of the 24th IEEE International
Symposium on Parallel Distributed Processing, ser. IPDPS ’10, April
2010, pp. 958–968.

[19] E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli,
E. Su, P. Unnikrishnan, and G. Zhang, “A proposal for task parallelism
in OpenMP,” in Proceedings of the Third International Workshop on
OpenMP, ser. IWOMP ’07, June 2007, pp. 1–12.

[20] X. Teruel, M. Klemm, K. Li, X. Martorell, S. L. Olivier, and C. Ter-
boven, “A proposal for task-generating loops in OpenMP,” in Proceed-
ings of the Eighth International Workshop on OpenMP, ser. IWOMP
’13, Sept. 2013, pp. 1–14.

[21] S. N. Agathos, P. E. Hadjidoukas, and V. V. Dimakopoulos, “Task-
based execution of nested OpenMP loops,” in Proceedings of the Eighth
International Conference on OpenMP, ser. IWOMP ’12, June 2012, pp.
210–222.

[22] R. D. Blumofe and C. E. Leiserson, “Scheduling multithreaded com-
putations by work stealing,” Journal of the ACM, vol. 46, no. 5, pp.
720–748, Sept. 1999.

[23] C. E. Leiserson, “The Cilk++ concurrency platform,” in Proceedings
of the 46th Annual Design Automation Conference, ser. DAC ’09, July
2009, pp. 522–527.

[24] J. Reinders, Intel Threading Building Blocks: Outfitting C++ for Multi-
Core Processor Parallelism. O’Reilly Media, 2007.

[25] J. Balart, A. Duran, M. Gonzàlez, X. Martorell, E. Ayguadé, and
J. Labarta, “Nanos Mercurium: A research compiler for OpenMP,” in
Proceedings of the Sixth European Workshop on OpenMP, ser. EWOMP
’04, Oct. 2004, pp. 103–109.

[26] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in Proceedings of the Second
International Symposium on Code Generation and Optimization, ser.
CGO ’04, San Jose, California, USA, Mar. 2004, pp. 75–86.

[27] P. E. Hadjidoukas and V. V. Dimakopoulos, “Nested parallelism in the
OMPi OpenMP/C compiler,” in Proceedings of the 13th International
European Conference on Parallel Processing, ser. EuroPar ’07, Aug.
2007, pp. 662–671.

[28] A. Chandramowlishwaran, J. Choi, K. Madduri, and R. Vuduc, “Brief
announcement: Towards a communication optimal fast multipole method
and its implications at exascale,” in Proceedings of the 24th Annual ACM
Symposium on Parallelism in Algorithms and Architectures, ser. SPAA
’12, June 2012, pp. 182–184.

[29] F. Gygi, “Architecture of Qbox: A scalable first-principles molecular
dynamics code,” IBM Journal of Research and Development, vol. 52,
no. 1.2, pp. 137–144, Jan. 2008.

[30] L. Ying, G. Biros, and D. Zorin, “A kernel-independent adaptive fast
multipole algorithm in two and three dimensions,” Journal of Compu-
tational Physics, vol. 196, no. 2, pp. 591–626, May 2004.

[31] M. Frigo and S. G. Johnson, “The design and implementation of
FFTW3,” Proceedings of the IEEE, vol. 93, no. 2, pp. 216–231, Feb.
2005.

[32] P. E. Hadjidoukas, G. C. Philos, and V. V. Dimakopoulos, “Exploit-
ing fine-grain thread parallelism on multicore architectures,” Scientific
Programming, vol. 17, no. 4, pp. 309–323, Dec. 2009.

[33] S. Thibault, R. Namyst, and P.-A. Wacrenier, “Building portable thread
schedulers for hierarchical multiprocessors: The BubbleSched frame-
work,” in Proceedings of the 13th International European Conference
on Parallel Processing, ser. EuroPar ’07, Aug. 2007, pp. 42–51.

[34] F. Broquedis, J. Clet-Ortega, S. Moreaud, N. Furmento, B. Goglin,
G. Mercier, S. Thibault, and R. Namyst, “hwloc: A generic framework
for managing hardware affinities in HPC applications,” in Proceedings
of the 18th Euromicro Conference on Parallel, Distributed and Network-
based Processing, ser. PDP ’10, Feb. 2010, pp. 180–186.

[35] S. L. Olivier, A. K. Porterfield, K. B. Wheeler, M. Spiegel, and
J. F. Prins, “OpenMP task scheduling strategies for multicore NUMA
systems,” International Journal of High Performance Computing Appli-
cations, vol. 26, no. 2, pp. 110–124, May 2012.

[36] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Martinell, X. Mar-
torell, and J. Planas, “OmpSs: A proposal for programming hetero-
geneous multi-core architectures.” Parallel Processing Letters, vol. 21,
no. 02, pp. 173–193, 2011.

[37] S. Bak, H. Menon, S. White, M. Diener, and L. Kale, “Integrating
OpenMP into the Charm++ programming model,” in Proceedings of the
Third International Workshop on Extreme Scale Programming Models
and Middleware, ser. ESPM2’17, Nov. 2017, pp. 4:1–4:7.

[38] ——, “Multi-level load balancing with an integrated runtime approach,”
in Proceedings of the 18th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, ser. CCGrid ’18, May 2018, pp.
31–40.

[39] M. Frigo, C. E. Leiserson, and K. H. Randall, “The implementation
of the Cilk-5 multithreaded language,” in Proceedings of the ACM
SIGPLAN 1998 Conference on Programming Language Design and
Implementation, ser. PLDI ’98, June 1998, pp. 212–223.

[40] L. V. Kale and S. Krishnan, “CHARM++: A portable concurrent object
oriented system based on C++,” in Proceedings of the Eighth Annual
Conference on Object-oriented Programming Systems, Languages, and
Applications, ser. OOPSLA ’93, Sept. 1993, pp. 91–108.

[41] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra,
K. Ebcioglu, C. von Praun, and V. Sarkar, “X10: An object-oriented
approach to non-uniform cluster computing,” in Proceedings of the 20th
Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, ser. OOPSLA ’05, Oct. 2005,
pp. 519–538.

[42] H. Pan, B. Hindman, and K. Asanović, “Composing parallel software
efficiently with Lithe,” in Proceedings of the 31st ACM SIGPLAN
Conference on Programming Language Design and Implementation, ser.
PLDI ’10, June 2010, pp. 376–387.

[43] A. Raman, H. Kim, T. Oh, J. W. Lee, and D. I. August, “Parallelism
orchestration using DoPE: The degree of parallelism executive,” in
Proceedings of the 32nd ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI ’11, June 2011, pp.
26–37.

[44] X. Tian, M. Girkar, S. Shah, D. Armstrong, E. Su, and P. Petersen,
“Compiler and runtime support for running OpenMP programs on
Pentium- and Itanium-architectures,” in Proceedings of the Eighth In-
ternational Workshop on High-Level Parallel Programming Models and
Supportive Environments, ser. HIPS ’03, April 2003, pp. 47–55.

13

VII. ARTIFACT APPENDIX

A. Abstract

Our artifact provides the software packages (including some
links to the open-source projects) and the applications we used
to perform our evaluation. All processes are automated by
several scripts, so users can easily build the packages, run
our benchmarks, and plot the data.

Our evaluation highly depends on an x86/64 machine that
supports AVX-512F (e.g., Intel Skylake 8180) and Intel C/C++
Compilers 2017.2.174.

B. Artifact check-list (meta-information)
• Algorithm: BOLT: OpenMP runtime system over ULT.
• Program: Microbenchmarks that evaluate nested OpenMP

parallel regions, KIFMM, and FFTW3.
• Compilation: Intel C/C++ Compilers 2017.2.174, Clang 7.0,

LLVM OpenMP 7.0, GCC 8.1, MPC 3.3.0, OMPi 1.2.3, and
OmpSs 17.12.1.

• Transformations: None.
• Binary: None.
• Data set: All the input is given by arguments embedded in the

benchmarking scripts.
• Run-time environment: Linux. We used Red Hat 7.6, but

our experiments should work on any (recent) Linux. The root
permission is not required to build and run our benchmarks.

• Hardware: Our experiments should work on any x86/64
machine that supports AVX-512F, but we strongly recommend
Intel Skylake 8180 for the KIFMM evaluation.

• Run-time state: None.
• Execution: The turbo-boost feature should be turned off to

reproduce the performance.
• Metrics: Execution time.
• Output: All the plotting scripts interpret the output properly.
• Experiments: Users run benchmarking scripts.
• How much disk space required (approximately)?: Disk

space enough to build and install compilers locally.
• How much time is needed to prepare workflow (approxi-

mately)?: Several hours to build and install compilers locally.
• How much time is needed to complete experiments (approx-

imately)?: A few days to complete all the experiments.
• Publicly available?: We will make it publicly available if our

artifact is accepted.

C. Description

1) How delivered: Our artifact is public and anyone can
download from the following link:
https://zenodo.org/record/3372716
(DOI: 10.5281/zenodo.3372716)

2) Hardware dependencies: Our experiments need an
x86/64 machine that supports AVX-512F (e.g., Intel Sky-
lake 8180 and Intel Knights Landing). For the evaluation
of KIFMM, we strongly recommend to run experiments on
Intel Skylake 8180; otherwise, the deadlock or significant
performance degradation might happen in Intel MKL.

3) Software dependencies: Our experiments require recent
Intel C/C++ Compilers and Intel MKL. For the evaluation
of KIFMM, we recommend to use the version of 2017.2.174;
otherwise, the deadlock or significant performance degradation
might happen in Intel MKL.

D. Installation

download.sh will download all the dependent packages
except the Intel products. Root privilege is not required.

On a node which is connected to the network.
$ sh download.sh

build.sh builds and installs all the packages. This process
does not require network connection. All the packages are
installed in the local artifact directory, so you can uninstall
them just by removing the whole directory.

On a node where you want to run the evaluation.
$ sh build.sh

E. Experiment workflow

For example, type the following to run our benchmarks:

On a node where you want to run the evaluation.
$ sh run.sh nested_loop
$ sh run.sh kifmm
$ sh run.sh qbox_fftw
All the outputs (raw log files) are placed in logs/.
$ ls logs
nested_loop qbox_fftw kifmm
$ ls logs/nested_loop
x.log

F. Evaluation and expected result

All the performance results are placed in the log directory.
You can create figures we presented in the paper with our
Python scripts. The obtained results should be similar to what
we described in the paper.

$ python plot/plot_nested_loop.py log/nested_loop/x.log
$ python plot/plot_qbox_fftw.py log/qbox_fftw/y.log
$ python plot/plot_kifmm.py log/kifmm/z.log
All outputs (pdfs) are placed in pdfs/.
$ ls pdfs
balanced_gcc.pdf balanced_icc.pdf balanced_lcc.pdf ...

G. Experiment customization

All the scripts are in the scripts directory. Please see the
scripts to customize the experiments.

H. Notes

README.md in the root directory of the artifact contains all the
details including minor software requirements (e.g., CMake
and Python) and some tips to build and run our test suite.

14

