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ABSTRACT
Task parallel models supporting dynamic and hierarchical
parallelism are believed to offer a promising direction to
achieving higher performance and programmability. Divide-
and-conquer is the most frequently used idiom in task par-
allel models, which decomposes the problem instance into
smaller ones until they become “trivial” to solve. However,
it incurs a high tasking overhead if a task is created for each
subproblem. In order to reduce this overhead, a “cut-off”
is commonly used, which eliminates task creations where
they are unlikely to be beneficial. The manual cut-off typ-
ically enlarges leaf tasks by stopping task creations when a
subproblem becomes smaller than a threshold, and possi-
bly transforms the enlarged leaf tasks into specialized ver-
sions for solving small instances (e.g., use loops instead of
recursive calls); it duplicates the coding work and hinders
productivity.

In this paper, we describe a compiler performing an effec-
tive cut-off method, called a static cut-off. Roughly speak-
ing, it achieves the effect of manual cut-off, but automat-
ically. The compiler tries to identify a condition in which
the recursion stops within a constant number of steps and,
when it is the case, eliminates task creations at compile
time, which allows further compiler optimizations. Based
on the termination condition analysis, two more optimiza-
tion methods are developed to optimize the resulting leaf
tasks in addition to replacing them with function calls; the
first is to eliminate those function calls without exponential
code growth; the second transforms the resulting leaf task
into a loop, which further reduces the overhead and even
promotes vectorization.

The evaluation shows that our proposed cut-off optimiza-
tion obtained significant speedups of a geometric mean of
8.0x compared to the original ones.
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1. INTRODUCTION
Task parallel models, which support dynamic creation of

fine-grained tasks and their dynamic load balancing, offer a
promising prospect for programming processors with an in-
creasing number of cores, as they achieve both productivity
and scalability for a range of programs. One notable feature
of task parallelism is hierarchical parallelism which is partic-
ularly suitable for divide-and-conquer algorithms. A number
of parallel systems and libraries including widely-used ones
such as Cilk [4], Intel Threading Building Blocks [27], and
OpenMP [25] incorporate task parallelism.

While task parallel systems provide good programmabil-
ity and scalability, naive task parallel divide-and-conquer
programs creating tasks until the problems become literally
“trivial” to solve suffer from a high runtime overhead of man-
aging tasks. In order to reduce the overhead, it is necessary
to enlarge the granularity of tasks by replacing creation of
tasks with function calls. This practice is commonly re-
ferred to as a “cut-off” and is typically applied manually by
the programmer.

Replacing task creations with function calls is often not
enough to achieve high absolute performance; the result-
ing code still has recursive function calls to subproblems,
rendering further compiler optimizations difficult to apply.
Addressing this problem requires not only removing creation
of tasks, but also aggressively optimizing the resulting code.
Several studies focusing on an automatic cut-off have been
proposed in the literature [3, 6, 34]. Nevertheless, to the best
of our knowledge, most of them are runtime techniques, de-
ciding whether to create a task or not by observations made
at runtime (e.g., the number of tasks and/or processor uti-
lization) and/or a depth from the root. Though the runtime
techniques are effective in reducing a task creation overhead
in many cases, they reveal limited opportunities for further
compile-time optimizations. Moreover, runtime techniques
have a risk of seriously reducing parallelism by stretching
the critical path of computation, as we discuss in Section 5.

To tackle these problems, we propose an effective cut-
off technique for divide-and-conquer task parallel programs
based on a static analysis of a condition in which the re-
cursion stops within a constant height from leaves. The ob-
tained termination condition is useful not only to generate
the cut-off threshold as humans do, but also perform fur-
ther compile-time optimizations to the programs obtained
after eliminating task creations, including inline expansion
of function calls and transformations into vectorizable loops.
In contrast to the runtime approaches, our static cut-off
method has a smaller risk of adversely reducing parallelism,



void fib(int n, int* ret){
if(n < 2){

*ret = n;
}else{

int a, b;
spawn fib(n-1, &a);
spawn fib(n-2, &b);
sync;
*ret = a + b;

}
}

Figure 1: Original task-parallel Fibonacci

because it guarantees that tasks applied the cut-off are within
a constant height from leaves and thus are likely to be small
(see Section 3.3). We implemented the algorithms as an
optimization pass in LLVM [18].

This paper makes the following contributions:

• We propose a static cut-off technique based on an anal-
ysis on a termination condition of recursive task func-
tions. The static cut-off requires no additional cost
at runtime and guarantees the adequate parallelism of
programs.

• We develop methods for further static optimizations
on several types of task parallel programs based on the
termination condition analysis, including inline expan-
sion of subproblem calls in a code-bloat-free manner
(code-bloat-free inlining), and transforming tasks into
vectorizable loops (task loopification).

• We show the proposed static cut-off technique can be
easily combined with runtime cut-off techniques, which
are useful as a fallback strategy when none of the static
optimizations applies.

• We evaluated performance of the proposal and show a
substantial speedup of a geometric mean of 5.0x with
the static cut-off, 6.2x with the code-bloat-free inlin-
ing, and 21x (up to 220x) with loopification over unop-
timized task parallel programs. The performance ob-
tained by the loopification was comparable to, or faster
in some cases than the loop-based programs written in
OpenMP with GCC and Polly [11].

The rest of this paper is organized as follows. Section 2
presents the overview of our method and the motivation of
this research. Section 3 first describes the static analysis of
the cut-off condition, and proposes static cut-off transforma-
tion composed of three cut-off methods based on the anal-
ysis: static task elimination, code-bloat-free inlining, and
loopification. Section 4 shows the experimental results of
the proposed optimizations. Section 5 discusses related work
and Section 6 concludes this paper.

2. OVERVIEW
Before entering into details, this section overviews our

cut-off methods using a simple running example. Consider
a program in Figure 1, which calculates an nth Fibonacci
number.

The original version suffers from a large overhead to cre-
ate tasks due to its too fine-grained task granularity. A
cut-off is a very common method to enlarge the granularity,
but making the granularity too large has a risk of reducing
parallelism significantly. As is commonly used in a manual
cut-off, our compiler applies a cut-off to a function when
the call tree rooted from it has a height within a constant
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Figure 2: Task tree of fib in Figure 1. Tasks enclosed by a
dotted line are the cut-off targets under the 2nd termination
condition (n < 4).

threshold. With an appropriately chosen threshold, tasks
under such conditions will perform a small amount of work,
so serializing them will have little impact on the parallelism.
Section 3.3 describes how we determine the cut-off threshold.
The key of our static analysis is, therefore, to find a condition
on function’s arguments in which the height of the task tree
from leaves to that task is within a constant height H. We
call this condition the Hth termination condition. In par-
ticular, a 0th termination condition is a condition in which
a function itself is a leaf and a 1st termination condition a
condition in which a function is either a leaf or calls only
leaves. Section 3.1 details how to obtain these conditions.

For example, Figure 2 shows cut-off targets (encircled by
a dotted line) within a height 2 in the task tree of fib. The
2nd termination condition is n < 4.

If the compiler successfully identifies the termination con-
dition, it tries to apply one of the transformations presented
in Figure 3.

Figure 3a shows the simplest transformation which just
replaces task creations with function calls. We call this op-
timization static task elimination (see Section 3.2.1). It re-
duces a tasking overhead while guaranteeing serialized tasks
are small. The overhead still remains high for extremely fine-
grained tasks such as fib due to the function calls, however.

A traditional method to alleviate function call overheads
is inline expansion. It becomes powerful under an Hth ter-
mination condition since we can eliminate the innermost re-
cursive calls by inlining H times. However, a usual inlining
strategy does not work well in our setting. It is desirable to
completely eliminate function calls within a coarsened task
(fib_seq in Figure 3a), but doing so would increase code size
significantly. Typical divide-and-conquer algorithms have
multiple recursive call sites, so repeatedly expanding them
increases code size exponentially with the depth of inline
expansion. To completely inline-expand divide-and-conquer
functions without exponential code growth, we develop a
method to aggregate the recursive call sites into a single
static call site. We call the method code-bloat-free inlining
(see Section 3.2.2). The resulting code after transformation
is shown in Figure 3b. Code-bloat-free inlining in general
transforms recursive functions into nested loops as deeply
nested as the depth of inline expansions.

There are cases in which we can do even better by trans-
forming recursive functions into more natural, flat or shal-
lowly nested loops. A divide-and-conquer vector addition
program shown in Figure 3c is such a program which can
be represented as a flat loop instead of a deeply nested loop
obtained by code-bloat-free inlining . Our compiler is able to
transform such a function to a flat loop as shown in Fig-



void fib(int n, int* ret){
if(n < 4){

fib_seq(n, ret);
}else{

int a, b;
spawn fib(n-1, &a);
spawn fib(n-2, &b);
sync;
*ret = a + b;

}
}
void fib_seq(int n, int* ret){

if(n < 2){
*ret = n;

}else{
int a, b;
fib_seq(n-1, &a);
fib_seq(n-2, &b);
*ret = a + b;

}
}

(a) Static task elimination

void fib_seq(int n, int* ret){
if(n < 2){

*ret = n;
}else{

int a, b;
for(int i = 0; i < 2; i++){

int n2, *ret2;
switch(i){
case 0:

n2=n-1; ret2=&a; break;
case 1:

n2=n-2; ret2=&b; break;
}
if(n2 < 2)

*ret2 = n2;
else

[...]
}
*ret = a + b;

}
}

(b) Code-bloat-free inlining

void vecadd(float* a,
float* b, int n){

if(n == 1){
*a += *b;

}else{
spawn vecadd(a, b, n/2);
spawn vecadd(a+n/2, b+n/2,

n-n/2);
sync;

}
}

(c) Task-parallel vector addition

void vecadd_seq(float* a,
float* b, int n){

for(int i = 0; i < n; i++)
*(a+i) += *(b+i);

}

(d) Loopification

Figure 3: Overview of our methods
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Figure 4: Flow of optimization selection

ure 3d, which then may be vectorized by the backend code
generator. We call this optimization loopification (see Sec-
tion 3.2.3). Loopification succeeds typically when the orig-
inal program is a dense array-based computation such as
stencil kernels and dense matrix multiplication. One might
argue such loops could have easily been manually written in
a parallel loop nest in the first place. We note that, how-
ever, the divide-and-conquer version can achieve the effect
of cache blocking at all levels [10] with uniform and simple
code, whereas loops must be manually and explicitly tiled to
enjoy cache blocking. Our goal is to help programmers write
cache-friendly parallel programs with high performance.

3. METHOD
This section details the proposed methods. Our compiler

first runs an analysis to identify an Hth termination con-
dition for an appropriately chosen threshold H. When the
analysis succeeds, a serialized version is generated and the
original version is made to call it when the condition is sat-
isfied. For further optimizations, the compiler tries to apply
loopification if applicable; otherwise, it attempts code-bloat-
free inlining. If the termination condition analysis fails, the
compiler applies a dynamic cut-off proposed by Thoman et
al. [34] as a fallback strategy. Figure 4 summarizes the flow
of the algorithm selection described above.

All of these methods were designed to receive the LLVM

intermediate representation (LLVM IR). We believe that
these methods can be implemented for any framework based
on Static Single Assignment (SSA) form.

3.1 Termination condition analysis
We first show the termination condition analysis, which

is essential to applying our static cut-off methods. While
it provides useful information for a cut-off, we note that
this analysis is applicable to any recursive functions. For a
divide-and-conquer task parallel function, its Hth termina-
tion condition CH is a (sufficient) condition on its incoming
arguments under which the call tree created by the function
call has a height not greater than H.
Based on this definition, a 0th termination condition C0 is

a condition in which it creates no child tasks. We compute
C0 as a condition in which the execution never reaches basic
blocks containing self-recursive calls by analyzing the control
flow graph and branch conditions of each basic block.

Specifically, let ECb be a condition in which basic block
b may be executed. ECb can be calculated by solving the
following set of equations for all basic blocks (“⇒”means an
implication). ∨

p:p→b

(ECp ∧BCp→b) ⇒ ECb (1)

ECbentry = true (2)

where bentry is an entry block of the function, b1 → b2 denotes
a control transfer edge from b1 to b2, and BCb1→b2 is a
condition at the end of b1 in which the control branches to
b2. Using an SSA representation, they can be obtained by
tracing definitions of variables from the branch instruction
at the end of b1.

Given ECb’s, C0 is calculated as a condition satisfying:

C0 ⇒
∧
r∈R

¬ECb(r) (3)

where R is the set of self-recursive task creation sites and
b(r) the basic block containing r ∈ R. This expression means
that C0 is a condition in which no execution conditions of
basic blocks which contain self-recursive task creations are
satisfied.

We can then calculate an Hth termination condition re-



void nqueens(board b, int row, int col, int* ret){
put(&b, row, col);
if(valid(b, row)){

if(row == N){
*ret = 1;

}else{
int ans[N]; zeroclear(ans , N);
for(int i = 0; i < N; i++)

spawn nqueens(b, row+1, i, ans+i);
sync;
*ret = sum(ans, N);

}
}

}

Figure 5: Task parallel N-Queens solver

cursively as follows. The recursion stops within a height H
if, for each self-recursive task creation site, either the control
never reaches there or its arguments to the recursion satisfy
the condition CH−1. Thus, CH is a condition satisfying:

CH ⇒
∧
r∈R

(
¬ECb(r) ∨ (arguments to r satisfying CH−1)

)
(4)

Let us apply the algorithm to our fib example in Figure 1.
By applying the expression (1), the compiler is able to find,
as a 0th termination condition:

C0 ≡ n < 2.

Let r1 and r2 denote the two self-recursive task creation sites
and belse the basic block containing them (the else block in
Figure 1). Based on the expression (4), C1 can be obtained
as follows:

C1 ≡
∧

r∈{r1,r2}

(¬ECbelse ∨ (arguments to r satisfying C0))

≡ (¬ECbelse ∨ ( (n− 1) satisfying C0))

∧ (¬ECbelse ∨ ( (n− 2) satisfying C0))

≡ (n < 2 ∨ n− 1 < 2) ∧ (n < 2 ∨ n− 2 < 2)

≡ n < 3.

By continuing this, the Hth termination condition CH is
recursively calculated as n < 2 +H.

There are cases when we fail to find a termination condi-
tion; it happens when we cannot express the branch condi-
tion that appears in the expression (1) in terms of the ar-
guments of the function. Finding the expression for BCp→b

begins with an expression of SSA variables that directly ap-
pear in the branch condition; it transitively replaces these
variables with their definitions, until the expression involves
only the incoming parameters of the function and constants.
When we encounter memory references, phi functions, or
function calls as a definition along the way, we always over-
estimate the reachability condition to identify a sufficient
termination condition, leading to missing optimization op-
portunities. If the obtained termination condition is always
false, the analysis effectively fails and no static optimizations
are applied.

This strategy can detect a useful condition for programs
involving a complex control flow. Figure 5 shows an nqueens
program, which counts solutions for the N-Queens problem;
reachability to recursive call sites depends on the return
value of a function call valid(b, row), which is unknown.
Our analysis assumes the control may transfer, from the ba-
sic block containing valid(b, row), to the “then” block of

the if statement. Our analysis can nevertheless infer a suffi-
cient condition, N −H ≤ row ≤ N , as the Hth termination
condition.

3.2 Static cut-off transformations
As shown in Figure 4, when the termination condition

analysis succeeds, we choose an appropriate cut-off param-
eter H (discussed later in Section 3.3) and then try to ap-
ply further cut-off optimizations: static task elimination,
code-bloat-free inlining, and loopification. We assume the
inputs of these transformations are task parallel programs,
but they are potentially applicable to non-task self-recursive
functions if dependence between multiple recursive calls is
properly analyzed.

If the termination condition cannot be obtained, our com-
piler applies a dynamic cut-off to the task as a fallback.

3.2.1 Static task elimination
If the termination condition for a function is successfully

obtained, our compiler generates a serialized version in which
all task creations are replaced with serial function calls. The
transformation always succeeds if the compiler calculates
the termination condition successfully. We call this method
static task elimination, which cuts off tasks and reduces a
tasking overhead without a risk of seriously degrading par-
allelism. Since this naive method alone is insufficient for ex-
tremely fine-grained tasks, the compiler tries to apply two
further optimizations to the serialized version, which we dis-
cuss below.

3.2.2 Code-bloat-free inlining
Though static task elimination is effective in reducing the

cost of task creation, a serialized function generated by the
elimination still confronts a overhead of function calls. In-
lining is a well-known remedy; in our setting, inlining is so
powerful that applying it H times can even remove all re-
cursive calls derived from tasks in an Hth termination con-
dition. Simply expanding recursive function calls, however,
grows code size exponentially when there are multiple recur-
sive call sites, so the simple inline expansion is unlikely to
yield the desired result.

Our compiler overcomes this problem by transforming re-
cursive functions so that there is only a single recursive call
site prior to inlining. A basic observation is that a divide-
and-conquer function often calls itself multiple times in se-
ries. In that case, it is usually possible to transform the
series of recursive calls into a loop, containing a single re-
cursive call site in its body. If self-recursive calls are made
to appear only once, the inlining technique can be safely ap-
plied to it repeatedly, increasing the code size linearly, not
exponentially.

This method first searches for recursive task creations in
the function. If they appear only once, we need no further
transformation (e.g., nqueens shown in Figure 5); otherwise,
it checks if all of them appear in a single basic block. If this
is the case, it tries to move other self-recursive calls to the
last one in the basic block unless it violates dependence, and
replace the last one into a loop calling all of them. This de-
pendence restriction is alleviated by the task semantics that
allow execution of spawned tasks to delay to the correspond-
ing sync. If all recursive calls cannot be gathered at the same
line, it gives up. The transformation is schematically shown
in Figure 6a and 6b.



A0;
f(a0, b0, ...);
A1;
f(a1, b1, ...);
[...]
AK−1;
f(aK−1,bK−1,...);
AK

(a) A basic block containing multiple recursive calls. Each
Ai is an arbitrary code sequence without branches.

A0;
A1;
[...]
AK−1;
for(int i = 0; i < K; i++){

a=phi(a0,...,aK−1);
b=phi(b0,...,bK−1);
[...]
f(a,b,...);

}
AK;

(b) Prior to inlining recursive calls, recursive call sites are
merged into a single call site.

Figure 6: Transformation of code-bloat-free inlining

Once the transformed function has only one static recur-
sive call site, the compiler inlined it H times. Importantly,
the innermost loop containing the recursive call can be omit-
ted since it is never executed in the Hth termination condi-
tion. This code-bloat-free inlining can therefore completely
remove the self-recursive function calls derived from task
creations. For example, consider the serialized fib function
generated by static task elimination with the 1st termination
condition shown as fib_seq in Figure 3a. It can be converted
into a function presented in Figure 7a, and then into a fully
inlined version shown in Figure 7b. Note that, in Figure 7b,
the innermost loop is removed since it is unreachable in the
given termination condition (n < 3).

3.2.3 Loopification
While code-bloat-free inlining eliminates all recursive calls,

the resulting deeply nested loop is not always ideal outcome.
Some functions can be converted into more natural (flat or
shallowly nested) loops under the cut-off conditions. For
example, it is obvious for humans that our vecadd example
shown in Figure 3c is equivalent to a flat loop shown in Fig-
ure 3d. Loopification attempts to recognize just that. The
target of loopification is a recursive function whose control
flow graph has the following properties, schematically shown
in Figure 8.

1. All recursive call sites are in a single basic block. Let
us call it a recursion block of the function.1

2. The recursion block does not contain any side effects
of the function besides calling recursions.

3. There are no control flows executing these blocks twice
or more in the recursion block (e.g., loop).

We call a part of function including other basic blocks a leaf
function, which is obtained by substituting a termination
condition into the original function. Such a function ulti-
mately performs all its side effects in the leaf function, thus
is hopefully equivalent to a loop whose body is the leaf func-
tion. Our analysis tries to find such a loop in the following
two steps.

1The assumption that there is only a single recursion block
is mainly for simplifying the exposition and implementation.

void fib_seq(int n, int* ret){
if(n < 2){

*ret = n;
}else{

int a, b;
for(int i = 0; i < 2; i++){

int n2, *ret2;
switch(i){
case 0:

n2 = n-1; ret2 = &a; break;
case 1:

n2 = n-2; ret2 = &b; break;
}
fib_seq(n2, ret2);

}
*ret = a + b;

}
}

(a) fib_seq which has a single recursive call site.

void fib_seq(int n, int* ret){
if(n < 2){

*ret = n;
}else{

int a, b;
for(int i = 0; i < 2; i++){

int n2, *ret2;
switch(i){
case 0:

n2 = n-1; ret2 = &a; break;
case 1:

n2 = n-2; ret2 = &b; break;
}
// Inline -expand fib_seq(n2, ret2);
if(n2 < 2){

*ret2 = n2;
}else{

// The innermost loop can be removed
// in the 1st termination condition.
//
//int a2, b2;
//for(int i2 = 0; i2 < 2; i2++){
// int n3, *ret3;
// switch(i2){ ... }
// fib_seq(n3, ret3);
//}
//*ret2 = a2 + b2;

}
}
*ret = a + b;

}
}

(b) Fully inlined fib_seq in Figure 7a

Figure 7: Code-bloat-free inlining for fib under n < 3

1. Candidate generation: It selects a few constant val-
ues that satisfy the appropriate termination condition
and propagates these constants throughout the body
of the function, until recursive calls are completely ex-
panded. The resulting code contains a set of leaf func-
tions with arguments. Based on this information, it
tries to synthesize a candidate loop.

2. Induction: It inductively verifies that the candidate loop
is equivalent to the recursive code in an arbitrary ter-
mination condition.

We explain the details by following our vecadd example
showing in Figure 3c. Its leaf function consists of the “then”
block containing the assignment *a += *b; We write it
L(a, b) below.

1. Candidate generation:.
Let us say we have thus far identified the 2nd termina-

tion condition, 1 ≤ n ≤ 4. By assigning a value satisfying
the condition, say 4, to n, and by propagating it, serialized



void f(a, b, c, ...){
if(...){

// Leaf function.
L(a, b, c, ...);

}else{
// Recursion block.
...
f(a0, b0, c0, ...);
...
f(a1, b1, c1, ...);
...

}
}

Figure 8: Loopification target

vecadd (vecadd_seq) becomes:

void vecadd_seq(float* a, float* b, int n/*=4*/){
vecadd_seq(a, b, 2);
vecadd_seq(a+2, b+2, 2);

}

By traversing recursive functions with constant propagation,
it ends up with:

L(a, b);
L(a+1, b+1);
L(a+2, b+2);
L(a+3, b+3);

It then observes the set of argument expressions:

{(a, b), (a+ 1, b+ 1), (a+ 2, b+ 2), . . . , (a+ 3, b+ 3) }

and tries to express the set by an affine transformation of a
rectangle. If it cannot be expressed so, the analysis fails. In
this example, it finds:

{(a, b) + i(1, 1) | i ∈ [0, 4)}.

By assigning a few other values to n and unifying the ob-
tained results, it yields:

{(a, b) + i(1, 1) | i ∈ [0, n)}.

The candidate loop thus becomes:

for (i ∈ [0,n))
L(a + i, b + i);

2. Induction:.
Induction phase verifies that the candidate loop is equiv-

alent to the original function by the usual induction.

Base case checks if the generated loop matches the candi-
date loop in the 0th termination condition.

Induction substitutes the candidate loop for the recursive
calls and checks if they can be fused into a single can-
didate loop.

In our vecadd example, the compiler derives that the base
case, under the 0th termination condition n = 1, becomes

L(a, b);

by propagating n = 1 throughout the function body. It is
then easy to see this is equivalent to the candidate loop.

For induction, it proves that a recursive block can be
translated into the loop if recursive calls can be converted
into that loop. We first replace the recursive calls in the
recursion block:

vecadd(a, b, n/2);
vecadd(a+n/2, b+n/2 , n-n/2);

with the candidate loops, obtaining:

for (i ∈ [0 ,n/2))
L(a+i, b+i);

for (i ∈ [0 ,n-n/2))
L(a+n/2+i, b+n/2+i);

We can shift the iteration space of the latter loop by n/2, to
obtain:

for (i ∈ [0 ,n/2))
L(a+i, b+i);

for (i ∈ [n/2,n))
L(a+i, b+i);

and fuse them into a single loop:

for (i ∈ [0 ,n))
L(a+i, b+i);

which is equivalent to the candidate. As a general strategy,
we try to shift the iteration space of each loop so that its
body becomes equivalent to the candidate loop and see if the
union of their iteration spaces becomes equivalent to that of
the original loop. The order of loops is changed if necessary
as long as task parallelism admits reordering.

It is notable that this induction only proves the equiva-
lence in the case where the recursive function terminates,
namely in an arbitrary termination condition. Our transfor-
mation guarantees that the loopified function is only called
in a termination condition which is explicitly introduced by
the static cut-off.

In practice, multiple loop candidates are generated for
particular tasks because of their arbitrariness of loop nesting
order (e.g., a loop with an index i, then a loop with an index
j, or vice versa and loop iterations order (ascending or de-
scending)). Either of them calculates the same computation,
however the performance is sensitive to the loop representa-
tion, especially loop order. The compiler tries to choose one
mostly accessing continuous memory in the innermost loop
with a smaller number of terms of lower/upper boundaries
as possible. Lastly, it attaches metadata conveying depen-
dence information exposed by task parallelism for promoting
further loop optimizations including loop vectorization.

3.3 Determining a cut-off height
Determining a height H for the static cut-off is essential

to balancing between parallelism of programs and sequential
performance; smaller H’s allow less effective cut-off, while
larger H’s might decrease parallelism. Appropriate thresh-
olds are values that mask a task creation overhead; i.e., val-
ues that give granularity larger than a constant factor of a
task creation overhead. If, for example, we want to keep
the tasking overhead lower than 2% of the execution time,
we would choose granularity at least 49 times larger than
the task creation overhead. Considering that the state-of-
the-art runtime systems create a task in roughly a hundred
cycles, our compiler estimates the number of cycles of a func-
tion under various heights and chooses the minimum height
that makes the granularity larger than 5000 cycles. In or-
der to avoid choosing a too small number due to inaccuracy
of cycle estimations, we ensure that the chosen height is at
least four. For tasks to which loopification is applied, the H
effectively determines cache blocking size of the loop in the
leaf, so we instead use the largest H whose resulting task
is estimated to access at most 256KB of data, a typical L2
cache size, which we experimentally found balances the ad-
vantage of cache blocking and straightforward control flows
in a loop.



void taskWithSizeCheck(arg1 ,arg2 ,...){
if(terminationConditionH+Hmin(arg1 ,arg2 ,...)){

// Input is too small.
taskWithoutCutoff(arg1 ,arg2 ,...);

}else{
// Input is adequately large.
taskWithCutoff(arg1 ,arg2 ,...);

}
}

Figure 9: Task interface from external calls

To estimate the number of cycles of a function, our current
implementation simply sums up the cost of all instructions
in the function, obtained by an LLVM’s cost function, and
then multiplies it by the number of children (or 2 if failed
to identify the number) to the power of the cut-off height.
There have been several studies on finding an optimal task
granularity by autotuning [2] or memory hierarchy-aware
task mapping [9], which may improve our rough estimation.
In reality, however, as shown in Section 4.4, our experiences
so far indicate performance in most programs plateaus with
a modest cut-off height (four).

3.4 Guaranteeing a minimum parallelism
Our heuristics to choose the cut-off height tries to ensure

the tasking overhead is within a small constant of the exe-
cution time. While desirable in most cases, when the height
of the whole task tree is smaller or only slightly greater than
the cut-off height, it makes more sense to use a smaller cut-
off height, even if it is known to have a non-negligible impact
on the overhead. To address this issue, we could generate
several versions each using a different cut-off height and se-
lect an appropriate one when the function is called from
outside. We currently adopt a simplified method using only
two versions, one that employs a cut-off at the determined
height and the other that does not use cut-off at all. We
introduce a constant Hmin, the minimum height from the
root up to which tasks are guaranteed to be created. Fig-
ure 9 shows the resulting function that serves as an entry
from outside the task.

3.5 Dynamic cut-off
A dynamic cut-off is a method which calls functions in-

stead of creating tasks when tasks are estimated to be abun-
dant based on runtime information such as the depth of the
task and the number of ready tasks. While we mainly fo-
cus on the static cut-off, we also employ a dynamic cut-off
technique as an effective fallback method when our static
analysis fails.

Our system adopts a state-of-the-art dynamic cut-off tech-
nique proposed by Thoman et al. [34], which generates mul-
tiple versions and selects one at runtime. They are the
original task, ones that unroll recursion a few times, and
a completely serialized version (similar to our static task
elimination). Since we were unable to implement the “sim-
plification” algorithm [34] in the unrolling step due to lack
of details in the paper. We applied inline-expansion and the
maximum -O3 optimization level of LLVM as our best effort.

4. EVALUATION

4.1 Evaluation settings
We implemented the proposed static cut-off algorithms as

an optimization pass in LLVM 3.6.0 [18]. All the programs

were run on MassiveThreads [22], a lightweight task library
employing a child-first random work-stealing scheduler [21].
The task library was modified to implement the dynamic
cut-off.

Fifteen benchmarks were prepared to demonstrate the effi-
cacy of our cut-off methods. The benchmarks are as follows:

1) fib calculates a 45th Fibonacci number with the naive
double recursion.

2) nqueens computes all solutions of the N-Queens prob-
lem, with N = 14. Both of our fib and nqueens adopt
the same task creation patterns in the benchmarks of
BOTS [7].

3) fft performs a Fast Fourier Transform. The input array
has 225 single-precision complex numbers.

4) sort is a merge sort with a parallelized merge step [1].
The input is an array of 100M single-precision floating-
point numbers.

5) nbody directly calculates forces between all N to N
pairs. The input array consists of 30K particles each of
which has its mass, position, velocity, and a temporal
variable to accumulate the force. Positions, velocities,
and forces are 3D vectors.

6) strassen multiplies two matrices using the Strassen
algorithm. The inputs are two matrices of 1024×1024
single-precision floating-point numbers. Though it is
ordinarily written to switch to a normal matrix mul-
tiplication by hand when the matrix size gets smaller,
this benchmark uses Strassen algorithm all the way
until the matrix size becomes 1.

7) vecadd is similar to the task shown in Figure 3c, but it
adds two float arrays and stores the result into another
array. Each array has 109 elements.

8) heat2d is a stencil computation solving a 2-dimensional
thermal diffusion equation on a 30K × 30K mesh.

9) heat3d is a 3-dimensional version of heat2d, on a
1K × 1K × 1K mesh.

10) gaussian is an image processing kernel that applies a
5× 5 Gaussian filter to an array of 30K × 30K single-
precision floating-point numbers.

11) matmul multiplies two matrices and stores the result
into another matrix. All three matrices have 2000 ×
2000 single-precision floating-point numbers.

12) trimul multiplies two upper triangular matrices with
the size of 2000×2000. It is similar to matmul, except
that it omits some multiplications with matrices either
of which is zero.

13) treeadd traverses a binary tree structure and updates
values (floating-point numbers) in the leaves. The in-
put is a balanced tree with the height of 30, containing
230 − 1 elements.

14) treesum traverses a binary tree structure and sums
up the values (floating-point numbers) in the leaves.
The input is a balanced tree with the height of 30 (the
same as the input to treeadd).

15) uts runs Unbalanced Tree Search [24] with the“T1XL”
input in the official samples, which generates a geomet-
ric tree with 1,635,119,272 elements in total.

Table 1 presents the larger input we used to examine the
performance achieved by our proposed methods and those
of loop parallel programs shown in Figure 12, which made
execution time longer than 0.2 seconds.



Table 1: Data size for an evaluation shown in Figure 12

nbody 40K × 40K vecadd 2G

heat2d 40K × 40K heat3d (1.2K)3

gaussian 40K × 40K matmul 5K × 5K
trimul 8K × 8K

Table 2: Applicability of cut-off methods

((X/Y) means a method was applied to
X out of Y tasks in the benchmark.)
dynamic static cbf loop

fib X X X
nqueens X X X

fft X X X
sort X (1/2) (1/2)

nbody X X X
strassen X X (4/5) (4/5)
vecadd X X X X
heat2d X X X X
heat3d X X X X
gaussian X X X X
matmul X X X X
trimul X X (1/4) (1/4)
treeadd X
treesum X

uts X

We wrote the benchmarks in C language, so we first trans-
lated them into the LLVM IR with Clang, a frontend C/C++
compiler for LLVM, and then applied our methods to the in-
termediate representation. Finally, we compiled them into
binary programs with the LLVM compiler with optimization
flags -O3 -ffp-contract=fast and a machine-specifying op-
tion. None of them use any manually written cut-off.

Table 2 shows which optimizations were applied to these
benchmarks.

We evaluated seven versions of each benchmark:

• base: An original version without any optimization.
• dynamic: A version with the adaptive multiversion-

ing method presented by Thoman et al. [34]. It con-
tains no optimizations we propose.

• static: A version with static task elimination.
• cbf: A version with code-bloat-free inlining.
• loop: A version with loopification.
• proposed: A version automatically selected by the

algorithm flow shown in Figure 4; it applies loop, cbf,
and then static in this order and selects the first one
that succeeds, falling back to dynamic when all fail.

• seq: A fully serialized version, created by replacing all
task creations with function calls.

Some benchmarks have multiple tasks to which applicable
optimizations differ. When the transformation specified by
the version is inapplicable to the task, the compiler tries
to apply cbf and then static. If both fail, it employs dy-
namic. For example, sort has two tasks: a sorting task and
a merging task. Whereas code-bloat-free inlining applies to
the former for the cbf version, neither cbf nor static to the
latter, which is thus optimized by dynamic.

The programs were run on a machine running Linux 3.16,
which has dual sockets of Intel Xeon E5-2699 v3 (Haswell)

processors (36 cores in total). We ran all the benchmarks
with numactl --interleave=all to balance physical memory
across sockets. All results reported are the average of five
measurements. Error bars in the charts indicate the 95%
confidence intervals.

4.2 Single-threaded performance
We first examine improvement of single-threaded perfor-

mance, shown in Figure 10. The baseline is a task par-
allel program with no cut-off (base). All programs were
parallelized but executed on a single core except for seq,
which simply serializes all task creations. The degree of
improvement depends on applications characteristics (e.g.,
the size of each leaf calculation and the number of division
of the divide-and-conquer strategies), but our optimizations
consistently achieved a significant speedup compared to the
baseline (base). Static task elimination (static) achieved
from 1.1x to 24.8x speedup (geometric mean of 5.3x), and
code-bloat-free inlining (cbf) elevated it to 1.1x - 33.5x (ge-
ometric mean of 6.6x) where it is applicable. Performance
of static task elimination (static) was comparable to that
of fully serialized ones (seq) except sort and strassen. It
presents that it successfully reduced a tasking overhead in
most cases.

Loopification (loop) further boosted performance, some-
times spectacularly, up to 333x, achieved by removing con-
trol flows and by exposing vectorization opportunities to the
backend compilers. Though the dynamic cut-off (dynamic)
has a wider applicability, the achieved speedup was a moder-
ate 0.9x to 5.9x (geometric mean of 2.6x); they were smaller
than those of static task elimination (static) in all cases ex-
cept heat2d, and those of code-bloat-free inlining (cbf) and
loopification (loop) in all cases where applicable.

Importantly, our proposed optimization (proposed) of-
fered the best performance in all cases, showing the effec-
tiveness of the algorithm selection criteria shown in Figure 4.

4.3 Multi-threaded performance
Figure 11 shows the improvement of multi-threaded exe-

cutions. The same programs we used in the previous experi-
ment were this time executed by 36 threads. The baseline is
the parallel performance of the task parallel programs with
no cut-off (base).

The result was overall similar to the single-threaded one;
by using the geometric mean metric, a speedup of 5.0x was
achieved by static task elimination (static), 6.0x by code-
bloat-free inlining (cbf), and 21x (up to 220x) by loopifi-
cation (loop), while dynamic cut-off (dynamic) yielded a
modest 1.8x speedup.

In comparison to the single-threaded performance shown
in Figure 10, scalability (speedup from single-threaded ex-
ecution to multi-threaded execution) tended to be lower in
optimized versions than in the base versions, especially in
vecadd and heat2d. It was presumably because they be-
came memory bandwidth-limited after removing task cre-
ation overheads.

Finally, for programs naturally expressible in loops, we
loop-parallelized them by hand and compared them with
task parallel programs optimized by our compiler. We loop-
parallelized nbody, vecadd, heat2d, heat3d, gaussian,
matmul, and trimul. They performed the same calcula-
tions with the corresponding task parallel versions, with the
only differences in load partitioning and execution order.
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Figure 10: It shows relative single-threaded performance of dynamic cut-off [34] (dynamic), static task elimination (static),
code-bloat-free inlining (cbf), loopification (loop), our proposal (proposed), and a sequential version (seq), using the original
task parallel program with no cut-off (base) as the baseline. The missing results are excluded when we calculate the geometric
mean of the overall speedups (geomean*). Both charts show the same results, different in the scale of y-axis.
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Figure 11: Multi-threaded performance. See Figure 10 for the meaning of labels. The baseline is the original (base).

The loop programs were parallelized in two ways: OpenMP
with GCC and Polly [11] with LLVM. One was an OpenMP
version parallelized by omp parallel for pragma. It was
compiled by GCC 4.8.4 with -O3 -ffp-contract=fast and a
machine-specifying option. The other one was automatically
parallelized by Polly [11], a locality-optimizer for LLVM
based on the polyhedral models with an automatic paral-
lelization feature. The Polly version was compiled by the
Clang 3.8.0 with -O3 -ffp-contract=fast and the machine-
specifying option, and its Polly with -polly -polly-parallel
and -polly-vectorizer = stripmine if it made the program
faster. We gave restrict keywords appropriately to help
automatic parallelization and vectorization in both cases.

Figure 12 shows the relative performance of loop parallel
programs, using 36 cores. The baseline is the task parallel
version optimized by proposed (task). omp and polly
are the performance of loop parallel programs optimized by
OpenMP with GCC or Polly with Clang. They used default
scheduling algorithm and applied no manual locality opti-

mizations such as blocking. We also made omp optimized,
a tuned OpenMP program by changing block sizes, schedul-
ing strategies, scheduling parameters (chunk size, etc.), and
collapse clauses for nested loops. Since we found that nbody
and vecadd were not parallelized by polly, these results
missing in the graph are excluded to calculate the geometric
mean of speedup (geomean*). Figure 12 shows the over-
all performance of task was faster than omp or polly; the
geometric mean of omp’s relative performance was 0.59x,
and that of polly was 0.60x. It indicates task utilized the
cache blocking, especially for matmul and trimul. How-
ever, omp optimized boosted performance significantly to
show that of 1.4x; careful manual optimizations (especially
blocking) enhanced performance overall. One disadvantage
of the divide-and-conquer strategy is that, even if we can
choose the best cut-off height, our cache blocking of task
is not so flexible as to fit the cache size exactly since the
problem size is basically evenly divided by the number of
recursive calls in a divide-and-conquer strategy.
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Figure 12: Performance comparison task parallel programs
optimized by our methods to loop parallel programs. The
baseline is task parallel programs (task). vecadd and
nbody are excluded to calculate the (geomean*) of polly

4.4 Cut-off threshold
Figure 13 shows the performance of static task elimina-

tion (static) using 36 threads, by changing the fixed height
parameter H in order to evaluate our current automatic
height selection. The baseline is the parallel performance of
tasks without cut-off (base). Crosses in the figure indicate
the heights our compiler automatically selected. Note that
some benchmarks (e.g., fft) have multiple tasks whose cho-
sen heights are different, thus have multiple crosses. While
a few benchmarks had the room for improving performance
by larger h (especially for fib), the figure overall shows that
our algorithm chose good heights that achieved nearly the
best performance, without unnecessarily aggressive cut-off
heights.

5. RELATED WORK

Automatic cut-off.
Since task granularity is one of the most important factors

for the performance of task parallel programs [20], there have
been several studies on automating manual cut-off [3, 6, 34].
Duran et al. [6] proposed a heuristic cut-off utilizing the run-
time information such as depth of the task and the number of
ready tasks. Bi et al. [3] extends their adaptive cut-off to ef-
ficiently deal with irregular task parallel programs. Thoman
et al. [34] proposed generating multiple versions including in-
lined versions and fully serialized version, and switching be-
tween them based on the similar criteria. These proposals,
or runtime-based approaches in general, have advantages of
being widely applicable and not requiring substantial com-
piler development efforts. However, besides the difficulty of
applying aggressive optimizations after a cut-off, they have a
risk of adversely decreasing parallelism. To see the problem,
consider a task creation site:

spawn f(x);

and say the system decides to serialize it (i.e., not to cre-
ate a task for it). The decision is made because all or most
processors are busy when the execution reaches this state-
ment and they will remain so at least for a while. The true
condition that deems this task creation unnecessary is that,
however, processors are busy during the entire span of f(x),
a condition that is difficult to predict at the time of task
creation. Were it not the case, an idle processor would lose
the opportunity to steal the continuation of f(x), decreasing
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Figure 13: Performance of various cut-off heights. The base-
line is task parallel programs with no cut-off (base). Crosses
denote the heights our compiler automatically selected.

parallelism.2 In general, serialization of a task is equiva-
lent to inserting an artificial dependence from the end of
the created task to the continuation of the task creation. It
may thus lengthen the critical path (the longest dependent
chain) of the computation, which determines an achievable
speedup [8] and there seems no obvious bounds on the factor
it is stretched.

Our static cut-off approach differs from these prior efforts
in that we statically identify small tasks and specifically tar-
get them for cut-off and further aggressive compile-time op-
timizations, such as inlining and loopification.

Optimization of recursive functions.
A number of studies have sought effective techniques to

remove recursions, especially in a field of functional pro-
gramming [5]. Tail call elimination [30] is a well-known
technique to transform recursive procedures into jumps (a
control flow without stacks). Particularly, it cannot han-
dle most divide-and-conquer algorithms, which perform two
or more recursive calls one of which is necessarily not tail-
recursive. Tang [32] proposed complete inlining , which can
be thought of a generalization of tail call elimination. It
recognizes, more broadly, recursive calls that can be trans-
formed into a jump. The recursive call does not have to be
tail-recursive, yet the technique still cannot handle proce-
dures that perform recursive calls twice or more. In con-
trast, our approach fully expands such recursions under the
condition in which the recursion stops in a certain number
of steps.

There have been numerous techniques primarily target-
ing divide-and-conquer algorithms [13, 29, 31]. Rugina et
al. [29] proposed function unrolling and rerolling, which to-
gether transform a recursive procedure to another recursive
procedure. The success of the transformation relies on “con-
ditional fusions,” which essentially require the depths of the
two recursions be identical. This condition seems very re-
strictive; most programs we applied our techniques to do not
satisfy it. Herrman and Lengauer [13] have shown transfor-
mation of divide-and-conquer Haskell programs to parallel
loop nest in C. It assumes Haskell programs written in a spe-
cific skeleton (template) and vectorizes them. The vector-
izable skeleton essentially assumes that the recursion stops
at the same depth everywhere, which seems restrictive for

2Here we assume a child-first execution policy [21], but a
similar argument holds for help-first policies as well.



practical purposes. An idea of recursion flattening proposed
by Stitt and Villarrealm [31] is similar to ours, which com-
pletely eliminates recursive calls by unrolling. Their algo-
rithm, however, only targets recursive functions whose max-
imum recursion depth can be determined at compiling time
(e.g., constant arguments).

Transformation algorithms translating loops into recur-
sions have been studied previously [15, 35] and some stud-
ies [33, 35] aimed at achieving the effect of cache blocking at
many different levels [10]. The opposite conversion has also
been developed [12, 14, 19], while most of them are targeting
functional programming languages and their main purpose
is recursion removal. Technical differences are as follows.
Harrison’s approach [12] cannot convert divide-and-conquer
programs. The technique proposed by Himpe [14] preserves
an execution order, so the generated loop is less optimal.
Liu’s method [19] requires a stack for multiple recursive calls
in general, or divide-and-conquer algorithms. The target of
our loopification, on the other hand, is divide-and-conquer
task functions and its resulting code can utilize the cache
blocking at all levels.

Vectorization of recursive programs.
Most previous researches on auto-vectorization targeted

loops [23] or basic blocks [17]. There have been a few tar-
geting recursive programs. Auto-vectorization on recursive
functions written in Haskell has been proposed by Petersen
et al. [26], which focuses on a simple recursive function,
but a divide-and-conquer function with multiple recursive
call sites. Jo et al. [16] have presented an effective auto-
vectorization method for programs traversing the same tree
many times and it is those multiple traversals to which a
vectorization is applied. In a recent work, Ren et al. [28]
proposed a general vectorization technique for divide-and-
conquer programs, which is very different from ours. In
their framework, a compiler assigns multiple tasks created
by a single task to different SIMD lanes. This strategy is
applied to the root of the task tree, effectively executing
subtrees near the root of the task tree in different SIMD
lanes. In contrast, our compiler tries to convert tasks near
the leaves of the task tree into loops, which may then be
vectorized. Their vectorization technique can be applied to
a wider range of programs than our loopification technique.
On the other hand, we believe the program generated by our
loopification technique still has a number of performance ad-
vantages when solely looked at vectorization techniques. It
has a simpler control flow and preserves the temporal lo-
cality of the original program. Moreover, our loopification
straightforwardly co-exists with thread level parallelism.

6. CONCLUSION
This paper proposed an effective static cut-off method

for divide-and-conquer task parallel programs and two fur-
ther optimizations; code-bloat-free inlining and loopifica-
tion. Our proposed algorithm statically determines a condi-
tion in which the recursion reaches near leaves and cut off
only those tasks. It then applies either code-bloat-free in-
lining or loopification of the resulting coarsened tasks. Our
static cut-off can be easily combined with the dynamic cut-
off, which can widen the applicable range. Compared to the
original task parallel programs with no cut-offs, our evalua-
tion shows good performance improvement.
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