
SOFTWARE COMBINING TO MITIGATE
MULTITHREADED MPI CONTENTION

Halim Amer, Yanfei Guo,
Kenneth J Raffenetti, Min Si,

Pavan Balaji
Argonne National Laboratory

Charles Archer, Michael Blocksome, Chongxiao Cao, Michael
Chuvelev, Hajime Fujita, Jeff R Hammond, Mikhail Shiryaev, Sagar

Thapaliya, Maria Garzaran
Intel Corporation

Shintaro Iwasaki,
Kenjiro Taura

The University of
Tokyo

HYBRID MPI +
THREADS
PROGRAMMING

Fundamentals and Scope

CONTEXT: THREADS ⇢ MPI ⇢ NETWORK INTERFACE

VNIVNIVNI

CTXCTXCTX

P0

VNIVNIVNI

CTXCTXCTX

P1Application

Threads
Processes

MPI Virtual Network
Interfaces (VNIs)

Network Hardware
Parallel Network
Contexts (CTXs)
• TCP sockets
• Libfabric endpoints
• UCX workers

APPLICATION THREADS-MPI INTERACTION
for (i=0; i<100; i++)
{
 compute(buf[i]);
 MPI_Send(&buf[i],…);
}

#pragma omp parallel for
for (i=0; i<100; i++)
 compute(buf[i]);

MPI_Send(buf,…);

#pragma omp parallel for
for (i=0; i<100; i++) {
 compute(buf[i]);
 #pragma omp critical
 MPI_Send(&buf[i],…);
}

#pragma omp parallel for
for (i=0; i<100; i++) {
 compute(buf[i]);
 MPI_Send(&buf[i],…);
}

MPI_THREAD_MULTIPLE

MPI_THREAD_SERIALIZED

MPI_THREAD_FUNNELED

MPI_THREAD_SINGLE

MPI Process

COMP.

COMP.

MPI COMM.

MPI Process

COMP.

COMP.

MPI COMM.

MPI Process

COMP.

COMP.

MPI COMM.

MPI Process

COMP.

COMP.

MPI COMM.

APPLICATION THREADS-MPI INTERACTION
for (i=0; i<100; i++)
{
 compute(buf[i]);
 MPI_Send(&buf[i],…);
}

#pragma omp parallel for
for (i=0; i<100; i++)
 compute(buf[i]);

MPI_Send(buf,…);

#pragma omp parallel for
for (i=0; i<100; i++) {
 compute(buf[i]);
 #pragma omp critical
 MPI_Send(&buf[i],…);
}

#pragma omp parallel for
for (i=0; i<100; i++) {
 compute(buf[i]);
 MPI_Send(&buf[i],…);
}

MPI_THREAD_MULTIPLE

MPI_THREAD_SERIALIZED

MPI_THREAD_FUNNELED

MPI_THREAD_SINGLE

MPI Process

COMP.

COMP.

MPI COMM.

MPI Process

COMP.

COMP.

MPI COMM.

MPI Process

COMP.

COMP.

MPI COMM.

MPI Process

COMP.

COMP.

MPI COMM.

MPI 3.1 requirement
- Thread safety (mutual exclusion)
- Progress (blocking calls only

block caller thread)

NETWORK RESOURCES: MAJOR HOT SPOT

VNIVNIVNI

CTXCTXCTX

P0

VNIVNIVNI

CTXCTXCTX

P1Application

Threads
Processes

MPI Virtual Network
Interfaces (VNIs)

Network Hardware
Parallel Network
Contexts (CTXs)

VNIi = f(Ti)?

• Not always possible to guarantee independent VNIs for threads
- Insufficient network resources (multiplexing necessary)
- Application constraints (e.g., load balancing network traffic across communicators, tags, etc.)
- Lack of user control over thread-VNI mapping

‣ Current MPI libraries best effort mapping (blindly mapping comms/tags/wins to VNIs)
‣ MPI Endpoints still not standard

CHALLENGE: NO CONTROL OVER CONCURRENCY

VNIVNIVNI

CTXCTXCTX

P0

VNIVNIVNI

CTXCTXCTX

P1Application

Threads
Processes

MPI Virtual Network
Interfaces (VNIs)

Network Hardware
Parallel Network
Contexts (CTXs)

• Threads belong to the user application, not MPI

• Synchronization algorithms that assume N threads won’t work

SIMPLIFICATION: SINGLE VNI FOR ALL THREADS

VNI

CTX

P1Application

Threads
Processes

MPI Virtual Network
Interfaces (VNIs)

Network Hardware
Parallel Network
Contexts (CTXs)

VNI

CTX

P0

HISTORY
MPI Thread Safety Models

THREAD SAFETY MODELS
• Abstract models

• Capture how thread safety is managed

- Critical section granularity

- Access order (e.g., fairness)

- Wait on completion synchronization model (e.g., spin on flag, lock acquisition,
condition variable, etc.)

• Ideally void of technical details (e.g., locking algorithm, atomic operations, etc.)

• Examples of models

• Global lock

• Per-object locking

• Lockless offloading

MOST BASIC THREAD_MULTIPLE MODEL

MPI_Wait (…,*req) {

 while (!completed(req)) {
 network_progress();

 }
 free(req);
 req = REQUEST_NULL;

}

MPI_Isend (…,*req) {

 request_create(req);
 network_isend(…,req);

}

MPI

APPLICATION

NETWORK
HARDWARE

#pragma omp parallel for
for (i=0; i<100; i++) {
 compute(buf[i]);
 MPI_Isend(&buf[i],…, &req[i]);
}
#pragma omp parallel for
for (i=0; i<100; i++)
 MPI_Wait(…, &req[i]);

MOST BASIC THREAD_MULTIPLE MODEL

MPI_Wait (…,*req) {

 while (!completed(req)) {
 network_progress();

 }
 free(req);
 req = REQUEST_NULL;

}

MPI_Isend (…,*req) {

 request_create(req);
 network_isend(…,req);

}

• Not thread-safe. Threads can corrupt

1. Hardware network state

2. User buffers

3. Request objects

4. …

#pragma omp parallel for
for (i=0; i<100; i++) {
 compute(buf[i]);
 MPI_Isend(&buf[i],…, &req[i]);
}
#pragma omp parallel for
for (i=0; i<100; i++)
 MPI_Wait(…, &req[i]);

MOST BASIC THREAD_MULTIPLE MODEL

MPI_Wait (…,*req) {
 lock_acquire(L);
 while (!completed(req)) {
 network_progress();
 if (!completed(req)) {
 lock_release(L);
 /*pause/yield*/
 lock_acquire(L);
 }
 }
 free(req);
 req = REQUEST_NULL;
 lock_acquire(L);
}

MPI_Isend (…,*req) {
 lock_acquire(L);
 request_create(req);
 network_isend(…,req);
 lock_release(L);
}

#pragma omp parallel for
for (i=0; i<100; i++) {
 compute(buf[i]);
 MPI_Isend(&buf[i],…, &req[i]);
}
#pragma omp parallel for
for (i=0; i<100; i++)
 MPI_Wait(…, &req[i]);

• Simplest MPI-compliant design
- Single API level lock (L)
- Release lock in blocking calls to let other threads

progress

MOST BASIC THREAD_MULTIPLE MODEL

MPI_Wait (…,*req) {
 lock_acquire(L);
 while (!completed(req)) {
 network_progress();
 if (!completed(req)) {
 lock_release(L);
 /*pause/yield*/
 lock_acquire(L);
 }
 }
 free(req);
 req = REQUEST_NULL;
 lock_acquire(L);
}

MPI_Isend (…,*req) {
 lock_acquire(L);
 request_create(req);
 network_isend(…,req);
 lock_release(L);
}

• Simplest MPI-compliant design
- Single API level lock (L)
- Release lock in blocking calls to let other threads

progress
• Value

- Simplicity (less error prone, easy to maintain)
- Low overheads under zero contention

• Drawbacks
- No internal concurrency
- Prone to serialization and contention
- Lack of asynchrony due to lock acquisitions

#pragma omp parallel for
for (i=0; i<100; i++) {
 compute(buf[i]);
 MPI_Isend(&buf[i],…, &req[i]);
}
#pragma omp parallel for
for (i=0; i<100; i++)
 MPI_Wait(…, &req[i]);

FINE-GRAINED LOCKING MODELS

MPI_Wait (…,*req) {
 while (!completed(req)) {
 lock_acquire(net_L);
 network_progress();
 lock_release(net_L);
 /*pause/yield*/
 }
 lock_acquire(req_L);
 free(req);
 req = REQUEST_NULL;
 lock_acquire(req_L);
}

MPI_Isend (…,*req) {
 lock_acquire(req_L);
 request_create(req);
 lock_release(req_L);
 lock_acquire(net_L);
 network_isend(…,req);
 lock_release(net_L);
}

Re

• Eliminate the coarse-grained global lock
- Independent objects ⇢ separate critical sections
- Single lock, per-object locks, locks per class of objects, etc.

• Value
- More internal concurrency ⇢ less serialization/contention

• Drawbacks
- Complexity and overheads grow with the number of critical

sections
- Hot spots still possible (all threads may funnel traffic through

same VNI)
- Lack of asynchrony due to lock acquisitions

• Instances: Dózsa et al. [1], Balaji et al. [2], Kandalla et al. [3]
[1] Gábor Dózsa et al. Enabling Concurrent Multithreaded MPI Communication on Multicore Petascale Systems. (EuroMPI’10)
[2] Pavan Balaji et al. Fine-Grained Multithreading Support for Hybrid Threaded MPI Programming. IJHPCA (2010)
[3] Krishna Kandalla et al. Optimizing Cray MPI and SHMEM Software Stacks for Cray-XC Supercomputers based on Intel KNL Processors. Cray User Group (2016).

#pragma omp parallel for
for (i=0; i<100; i++) {
 compute(buf[i]);
 MPI_Isend(&buf[i],…, &req[i]);
}
#pragma omp parallel for
for (i=0; i<100; i++)
 MPI_Wait(…, &req[i]);

CONTENTION MANAGEMENT MODELS

MPI_Wait (…,*req) {
 lock_acquire(L);
 if (!completed(req))
 cond_wait(req.c, L);

 while (!completed(req)) {
 req2 = network_cq_poll();
 cond_signal(req2.c);
 }
 free(req);
 req = REQUEST_NULL;
 lock_acquire(L);
}

MPI_Isend (…,*req) {
 lock_acquire(L);
 request_create(req);
 network_isend(…,req);
 lock_release(L);
}

#pragma omp parallel for
for (i=0; i<100; i++) {
 compute(buf[i]);
 MPI_Isend(&buf[i],…, &req[i]);
}
#pragma omp parallel for
for (i=0; i<100; i++)
 MPI_Wait(…, &req[i]);

• Advanced critical section management on contention
- Orthogonal to critical section granularity
- Goal: maximize work inside critical sections
- Example: O(1) instead of O(N) blind wakeup

• Value
- No added complexity
- Demonstrated high performance even with coarse-grained

locking
• Drawbacks

- Serialization and lack of concurrency
- Lack of asynchrony due to lock acquisitions

• Instances: Dang et al [1] and Amer et al. [2]

O(1)
wakeup

[1] Vu Dang et al. Advanced Thread Synchronization for Multithreaded MPI Implementations. (CCGRID’17)
[2] Abdelhalim Amer et al. Lock Contention Management in Multithreaded MPI. ACM Transactions on Parallel Computing (TOPC) 2019

Just for illustration
purposes. Incomplete and
incorrect. See Dang et al.
[1] for complete algorithm.

Re

LOCKLESS OFFLOADING MODEL

MPI_Wait (…,*req) {

 while (!completed(req)) {
 /* spin on the
 Request local flag*/
 }
 lock_acquire(req_L);
 free(req);
 req = REQUEST_NULL;
 lock_acquire(req_L);
}

MPI_Isend (…,*req) {
 lock_acquire(req_L);
 request_create(req);
 lock_release(req_L);
 descr_create(…,req,&d);
 network_post(…,d);
}

• Offloading to dedicated communication threads

- Application threads offload operations to communication threads
- Lockless: 1) post network operations, 2) wait on a flag on

synchronization
- Asynchronous progress (more than just a thread safety

model)
• Value: Highest possible concurrency
• Drawbacks

- Must sacrifice CPU resources
- Forces enqueue operation even with zero contention

• Instances: Kumar et al. [1], Vaidyanathan et al. [2]
[1] Sameer Kumar et al. PAMI: A Parallel Active Message Interface for the Blue Gene/Q Supercomputer. (IPDPS ’12).
[2] Karthikeyan Vaidyanathan et al. Improving Concurrency and Asynchrony in Multithreaded MPI Applications Using Software Offloading. (SC’15)

Used as upper bound
on performance
under contention

Pi

Dedicated
communication

thread

Complete
Wait

Post Execute

Proceed

1

2

3

45

HISTORICAL SUMMARY
Fine-Grained

Locking
Lock

Contention
Management

Offloading

Nonblocking
Operations

No Contention
Overhead and

complexity grows
with the number
of critical sections

Simplest and
lowest overhead

High offloading
overhead

High
Contention

Performance
improvements from

increased
concurrency

High performance
from high

throughput locks

High performance
proportional to

queue efficiency

Waiting in
Blocking

Operations

No Contention
Overhead and

complexity grows
with the number
of critical sections

Low overhead Lowest overhead
(only check local flag)

High
Contention

Bad performance
from blind lock

ownership
passing

High performance
O(1) wakeup.

Overhead of
progress calls

Lowest overhead
(only check local flag,

no progress calls)

Asynchrony of Nonblocking
Calls

May block on lock
acquisition

May block on lock
acquisition Asynchronous

CPU
Resource Consumption Nothing special Nothing special

CPU resources
grow with the

number of
dedicated threads

Hardware Awareness Can be Agnostic Necessary for high
throughput locks Can be agnostic

NEW SOFTWARE COMBINING MODELS (1/2)
Fine-Grained

Locking
Lock

Contention
Management

Offloading CSync

Nonblocking
Operations

No Contention
Overhead and

complexity grows
with the number
of critical sections

Simplest and
lowest overhead

High offloading
overhead

High offloading
overhead

High
Contention

Performance
improvements from

increased
concurrency

High performance
from high

throughput locks

High performance
proportional to
queue efficiency

High performance
proportional to

queue efficiency

Waiting in
Blocking

Operations

No Contention
Overhead and

complexity grows
with the number
of critical sections

Low overhead Lowest overhead
(only check local flag) Low overhead

High
Contention

Bad performance
from blind lock

ownership
passing

High performance
O(1) wakeup.

Overhead of
progress calls

Lowest overhead
(only check local flag,

no progress calls)
Wasteful

Asynchrony of Nonblocking
Calls

May block on lock
acquisition

May block on lock
acquisition Asynchronous

May block on
pending

operation or lock
acquisition

CPU
Resource Consumption Nothing special Nothing special

CPU resources
grow with the

number of
dedicated threads

Nothing special

Hardware Awareness Can be Agnostic Necessary for high
throughput locks Can be agnostic Can be agnostic

Software Combining

NEW SOFTWARE COMBINING MODELS (2/2)
Fine-Grained

Locking
Lock

Contention
Management

Offloading CSync LockQ

Nonblocking
Operations

No Contention
Overhead and

complexity grows
with the number

of critical sections

Simplest and
lowest overhead

High offloading
overhead

High offloading
overhead

Simple and low
overhead

High
Contention

Performance
improvements from

increased
concurrency

High performance
from high

throughput locks

High performance
proportional to

queue efficiency

High performance
proportional to

queue efficiency

High performance
proportional to

queue efficiency

Waiting in
Blocking

Operations

No Contention
Overhead and

complexity grows
with the number

of critical sections
Low overhead Lowest overhead

(only check local flag) Low overhead Low overhead

High
Contention

Bad performance
from blind lock

ownership
passing

High performance
O(1) wakeup.

Overhead of
progress calls

Lowest overhead
(only check local flag,

no progress calls)
Wasteful Not wasteful but

unsatisfactory

Asynchrony of Nonblocking
Calls

May block on lock
acquisition

May block on lock
acquisition Asynchronous

May block on
pending

operation or lock
acquisition

Asynchronous

CPU
Resource Consumption Nothing special Nothing special

CPU resources
grow with the

number of
dedicated threads

Nothing special Nothing special

Hardware Awareness Can be Agnostic Necessary for high
throughput locks Can be agnostic Can be agnostic Can be agnostic

Software Combining

SOFTWARE
COMBINING
Description and Example

SOFTWARE COMBINING
• Goal: scalability

• Principle
• Lock + announcement list
• Waiters announce their work requests

• Lock owner combines them (executes
on behalf of waiters)

• Most implementations are hardware
agnostic

• Several implementations

• Many scalable applications especially for
concurrent data structures

- Lists, queues, stacks, etc.

Signal
Completion

Post

Execute

Combiner Thread at Entry

1

2

3
4

Lock

Announcement list

Wait

Post

Combiner Thread after Wait

Unlock
1

2
3

4
New

combiner
thread

Combiner Thread after Wait

Wait

Post1

2
Execute 3

Signal
Completion

4Proceed5

Announcement list
Lock

DSM-SYNCH: EXTENDING MCS WITH COMBINING
• Probably the most popular mutual exclusion algorithm (over 1.5K citations!)

• Mellor-Crummey & Scott (1991): “Algorithms for scalable synchronization on
shared-memory multiprocessors”. ACM Transactions on Computer Systems.

• Queue-based lock algorithm

L3
L2L2

T3T2

L3
L2L2

T1T0

Lock = Tail

DSM-SYNCH: EXTENDING MCS WITH COMBINING
• Probably the most popular mutual exclusion algorithm (over 1.5K citations!)

• Mellor-Crummey & Scott (1991): “Algorithms for scalable synchronization on
shared-memory multiprocessors”. ACM Transactions on Computer Systems.

• Queue-based lock algorithm

L3
L2L2

T3T2

L3
L2L2

T1T0

Lock = Tail

DSM-SYNCH: EXTENDING MCS WITH COMBINING
• Probably the most popular mutual exclusion algorithm (over 1.5K citations!)

• Mellor-Crummey & Scott (1991): “Algorithms for scalable synchronization on
shared-memory multiprocessors”. ACM Transactions on Computer Systems.

• Queue-based lock algorithm

L3
L2L2

T3T2

L3
L2L2

T1T0

Lock = Tail

Ownership Reclamation

DSM-SYNCH: EXTENDING MCS WITH COMBINING
• Probably the most popular mutual exclusion algorithm (over 1.5K citations!)

• Mellor-Crummey & Scott (1991): “Algorithms for scalable synchronization on
shared-memory multiprocessors”. ACM Transactions on Computer Systems.

• Queue-based lock algorithm

L3
L2L2

T3T2

L3
L2L2

T1T0

Lock = Tail

Ownership Reclamation

Lock owner can safely
traverse wait queue

DSM-SYNCH: EXTENDING MCS WITH COMBINING
• Extend an MCS queue node with a request or work descriptor
• Wait queue has two purposes

1. Holds waiting thread nodes as in MCS
2. Works as an announcement list to publish work descriptors

• Lock owner executes operations found in the queue

L3
L2L2

T3T2

L3
L2L2

T1T0

Lock = Tail

d
apply(d)
mark_complete(d)

Fatourou, Panagiota, and Nikolaos D. Kallimanis. "Revisiting the combining synchronization technique." In ACM SIGPLAN Notices (PPoPP’12)

PERFORMANCE EXAMPLE WITH A FIFO QUEUE

Fatourou, Panagiota, and Nikolaos D. Kallimanis. "Revisiting the combining synchronization technique." In ACM SIGPLAN Notices (PPoPP’12)

Enqueue Dequeue

mcs_acquire()

desc_create(&enq_d)
dsm_sync(enq_d)

mcs_release()

mcs_acquire()mcs_acquire()

mcs_release()

dsm_sync(deq_d)
desc_create(&deq_d)

PERFORMANCE EXAMPLE WITH A FIFO QUEUE

Th
ro

ug
hp

ut
 (e

nq
-d

eq
/s

ec
on

d)

0E+00

1.25E+06

2.5E+06

3.75E+06

5E+06

Number of Threads

0 15 30 45 60

MCS DSM-Synch

Fatourou, Panagiota, and Nikolaos D. Kallimanis. "Revisiting the combining synchronization technique." In ACM SIGPLAN Notices (PPoPP’12)

Enqueue Dequeue

mcs_acquire()

desc_create(&enq_d)
dsm_sync(enq_d)

mcs_release()

mcs_acquire()mcs_acquire()

mcs_release()

dsm_sync(deq_d)
desc_create(&deq_d)

2.75x

Enq/Deq throughput on 56-Core Intel Skylake at 2.5GHz

CSYNC AND
LOCKQ
MODELS
Software Combining at the Rescue

CSYNC: DIRECT SOFTWARE COMBINING APPLICATION

MPI_Wait (…,*req) {
 while (!completed(req))
 {
 lock_acquire(net_L);
 network_progress();
 lock_release(net_L);
 /*pause/yield*/
 }
 lock_acquire(req_L);
 free(req);
 req = REQUEST_NULL;
 lock_acquire(req_L);
}

MPI_Isend (…,*req) {
 lock_acquire(req_L);
 request_create(req);
 lock_release(req_L);
 lock_acquire(net_L);
 network_isend(…,req);
 lock_release(net_L);
}

MPI_Wait (…,*req) {
 while (!completed(req)) {
 descr_create(PROGRESS,&d);
 dsm_synch(net_L, d);
 /*pause/yield*/
 }
 lock_acquire(req_L);
 free(req);
 req = REQUEST_NULL;
 lock_acquire(req_L);
}

MPI_Isend (…,*req) {
 lock_acquire(req_L);
 request_create(req);
 lock_release(req_L);
 descr_create(ISEND,…,&d);
 dsm_synch(net_L, d);
}

CSYNC: DIRECT SOFTWARE COMBINING APPLICATION

MPI_Wait (…,*req) {
 while (!completed(req))
 {
 lock_acquire(net_L);
 network_progress();
 lock_release(net_L);
 /*pause/yield*/
 }
 lock_acquire(req_L);
 free(req);
 req = REQUEST_NULL;
 lock_acquire(req_L);
}

MPI_Isend (…,*req) {
 lock_acquire(req_L);
 request_create(req);
 lock_release(req_L);
 lock_acquire(net_L);
 network_isend(…,req);
 lock_release(net_L);
}

MPI_Wait (…,*req) {
 while (!completed(req)) {
 descr_create(PROGRESS,&d);
 dsm_synch(net_L, d);
 /*pause/yield*/
 }
 lock_acquire(req_L);
 free(req);
 req = REQUEST_NULL;
 lock_acquire(req_L);
}

MPI_Isend (…,*req) {
 lock_acquire(req_L);
 request_create(req);
 lock_release(req_L);
 descr_create(ISEND,…,&d);
 dsm_synch(net_L, d);
}

apply (*d) {
 switch(d->op) {
 case ISEND:
 network_isend(…); 
 case PROGRESS:
 network_progress(…);
 }
}

Combiner thread
internal call

LIMITATIONS OF CSYNC

MPI_Wait (…,*req) {
 while (!completed(req)) {
 descr_create(PROGRESS,&d);
 dsm_synch(net_L, d);
 /*pause/yield*/
 }
 lock_acquire(req_L);
 free(req);
 req = REQUEST_NULL;
 lock_acquire(req_L);
}

MPI_Isend (…,*req) {
 lock_acquire(req_L);
 request_create(req);
 lock_release(req_L);
 descr_create(ISEND,…,&d);
 dsm_synch(net_L, d);
}

Unbounded waiting
wastes asynchrony of

nonblocking calls
2

Software offloading even
under no contention

(descriptor creation +
enq/deq overhead)

1

Combining queue polluted
by progress calls (low

priority operation)
3

ELIMINATING UNNECESSARY OFFLOADING
• Don’t post a work descriptor

unconditionally
• Use an empty node (no descriptor

creation)
• Try to acquire the lock

- If successful
‣ Combine operations
‣ If threshold of combining

reached, enqueue my operation
‣ Else execute operation and then

leave
- Lock acquisition failure

‣ Post work descriptor
‣ Wait

Signal
Completion

Post

Execute

1

2

3
4

Lock

Announcement list

Signal
Completion

Post

Execute

1

2
3

Trylock

Announcement list

POST AND LEAVE BREAKS THE SYSTEM
• Keeping nonblocking calls

asynchronous improves latency
hiding and overlapping
opportunities

• Only way is to leave after posting a
work descriptor on lock acquisition
failure
- Thread gives up lock ownership

passing and combining
responsibilities

- Work descriptors and threads
may starve in the queue

MPI_Isend (…,*req) {
 lock_acquire(req_L);
 request_create(req);
 lock_release(req_L);
 descr_create(ISEND,…,&d);
 dsm_synch(net_L, d);
}

Lock ownership passing
Completion signal

Lock ownership
passing

Starved nodes

Post and leave

MPI_Isend (…,*req) {
 lock_acquire(req_L);
 request_create(req);
 lock_release(req_L);
 if (trylock(net_L)) {
 combine();
 network_isend(…); 
 lock_release(net_L);
 } else {
 descr_create(ISEND,…,&d);
 post(d); 
 }
}

SOLUTION: DECOUPLED LOCK-LIST STRUCTURE
• Fundamental issue is coupled lock-

list data structure
• Decoupling data structure

- No waiting necessary in a
nonblocking call

- Post and leave, and thus keep
nonblocking calls
asynchronous

• Flexibility
- Any lock algorithm can be used
- Any concurrent list data structure

can be used

Post
1

Trylock
2

Any lock
algorithm

Any
concurrent list
data structure

RACES AND MPI COMPLETION SEMANTICS
• Work descriptors may never be

executed due to races
• Solution: rely on MPI completion

semantics as last resort
- Request completion: MPI_Wait

and MPI_Test family
- RMA: synchronization calls (e.g.,

MPI_Win_flush,
MPI_Win_unlock, etc.)

T1 T2

 trylock()
 combine()
 network_isend()
trylock()
 lock_release()
desc_create(d) /* Leave */
post(d)
/* Leave */

Success

Fail

d may never be
executed

MPI_Wait (…,*req) {
 while (!completed(req))
 {
 lock_acquire(net_L);
 combine();
 network_progress();
 lock_release(net_L);
 /*pause/yield*/
 }
 …
}

MPI_Isend (…,*req) {
 lock_acquire(req_L);
 request_create(req);
 lock_release(req_L);
 if (trylock(net_L)) {
 combine();
 network_isend(…); 
 lock_release(net_L);
 } else {
 descr_create(ISEND,…,&d);
 post(d); 
 }
}

PUTTING THEM TOGETHER: LOCKQ AND DETAILS
• LockQ

- Avoids unnecessary offloading under no
contention

- Keeps nonblocking asynchronous
- Combing queue is not polluted by progress calls

• Combining thread doing too much?
- User-controllable combining threshold
- Combining responsibility changes over time

• How about nonblocking progress calls like
MPI_Test?
- Asynchronous with trylock
- Exponential backoff to reduce contention

• Are nonblocking calls made blocking with
last resort combining?
- Yes, but rare in practice

MPI_Wait (…,*req) {
 while (!completed(req))
 {
 lock_acquire(net_L);
 combine();
 network_progress();
 lock_release(net_L);
 /*pause/yield*/
 }
 …
}

EVALUATION

MESSAGE RATE VS. STATE-OF-THE-ART

●

●

●
●

●
●

●
● ● ●

●

●

●

● ● ●

●

● ● ● ● ● ●
●

● ●

●

●

●
●

●
●

●

●
● ●

● ●
●

● ● ●

●

●

●
●

●
●

Irecv Isend Put

2 8 32 128 2 8 32 128 2 8 32 128

524288

1048576

2097152

Number of Threads per MPI Process

M
es

sa
ge

 R
at

e
(m

sg
s/

s)

●Global Per−VNI Offload HMCS<2>USC HMCS<3>USC CSync LockQ−MCS LockQ−MTX

64B message rate between two 56-Core Intel Skylake nodes at 2.5GHz over Intel Omnipath

Label Global Per-VNI Offload HMCS<N>US
C CSync LockQ-MCS LockQ-MTX

Description Global MCS
lock

VNI fine-grained
locking with MCS

Lockless
Software

offloading
HMCS lock +
O(1) wakeup

VNI granularity
with DSM-

Synch

VNI granularity
with MCS-

based LcokQ

VNI granularity
with Pthread
mutex-based

LockQ

MESSAGE RATE VS. STATE-OF-THE-ART

●

●

●
●

●
●

●
● ● ●

●

●

●

● ● ●

●

● ● ● ● ● ●
●

● ●

●

●

●
●

●
●

●

●
● ●

● ●
●

● ● ●

●

●

●
●

●
●

Irecv Isend Put

2 8 32 128 2 8 32 128 2 8 32 128

524288

1048576

2097152

Number of Threads per MPI Process

M
es

sa
ge

 R
at

e
(m

sg
s/

s)

●Global Per−VNI Offload HMCS<2>USC HMCS<3>USC CSync LockQ−MCS LockQ−MTX

64B message rate between two 56-Core Intel Skylake nodes at 2.5GHz over Intel Omnipath

Label Global Per-VNI Offload HMCS<N>US
C CSync LockQ-MCS LockQ-MTX

Description Global MCS
lock

VNI fine-grained
locking with MCS

Lockless
Software

offloading
HMCS lock +
O(1) wakeup

VNI granularity
with DSM-

Synch

VNI granularity
with MCS-

based LcokQ

VNI granularity
with Pthread
mutex-based

LockQ

LockQ single threaded
close to ideal. Offload

and CSync highest
overhead

MESSAGE RATE VS. STATE-OF-THE-ART

●

●

●
●

●
●

●
● ● ●

●

●

●

● ● ●

●

● ● ● ● ● ●
●

● ●

●

●

●
●

●
●

●

●
● ●

● ●
●

● ● ●

●

●

●
●

●
●

Irecv Isend Put

2 8 32 128 2 8 32 128 2 8 32 128

524288

1048576

2097152

Number of Threads per MPI Process

M
es

sa
ge

 R
at

e
(m

sg
s/

s)

●Global Per−VNI Offload HMCS<2>USC HMCS<3>USC CSync LockQ−MCS LockQ−MTX

64B message rate between two 56-Core Intel Skylake nodes at 2.5GHz over Intel Omnipath

Label Global Per-VNI Offload HMCS<N>US
C CSync LockQ-MCS LockQ-MTX

Description Global MCS
lock

VNI fine-grained
locking with MCS

Lockless
Software

offloading
HMCS lock +
O(1) wakeup

VNI granularity
with DSM-

Synch

VNI granularity
with MCS-

based LcokQ

VNI granularity
with Pthread
mutex-based

LockQ

Single NUMA node
competitive

performance with
software combining.

CSynch: insufficient list
depth (partially due to

pollution from progress)

Polling for progress
degrades scalability

MESSAGE RATE VS. STATE-OF-THE-ART

●

●

●
●

●
●

●
● ● ●

●

●

●

● ● ●

●

● ● ● ● ● ●
●

● ●

●

●

●
●

●
●

●

●
● ●

● ●
●

● ● ●

●

●

●
●

●
●

Irecv Isend Put

2 8 32 128 2 8 32 128 2 8 32 128

524288

1048576

2097152

Number of Threads per MPI Process

M
es

sa
ge

 R
at

e
(m

sg
s/

s)

●Global Per−VNI Offload HMCS<2>USC HMCS<3>USC CSync LockQ−MCS LockQ−MTX

64B message rate between two 56-Core Intel Skylake nodes at 2.5GHz over Intel Omnipath

Label Global Per-VNI Offload HMCS<N>US
C CSync LockQ-MCS LockQ-MTX

Description Global MCS
lock

VNI fine-grained
locking with MCS

Lockless
Software

offloading
HMCS lock +
O(1) wakeup

VNI granularity
with DSM-

Synch

VNI granularity
with MCS-

based LcokQ

VNI granularity
with Pthread
mutex-based

LockQ

Significant
degradation across

NUMA nodes except
for Offloading

MESSAGE RATE VS. STATE-OF-THE-ART

●

●

●
●

●
●

●
● ● ●

●

●

●

● ● ●

●

● ● ● ● ● ●
●

● ●

●

●

●
●

●
●

●

●
● ●

● ●
●

● ● ●

●

●

●
●

●
●

Irecv Isend Put

2 8 32 128 2 8 32 128 2 8 32 128

524288

1048576

2097152

Number of Threads per MPI Process

M
es

sa
ge

 R
at

e
(m

sg
s/

s)

●Global Per−VNI Offload HMCS<2>USC HMCS<3>USC CSync LockQ−MCS LockQ−MTX

64B message rate between two 56-Core Intel Skylake nodes at 2.5GHz over Intel Omnipath

Label Global Per-VNI Offload HMCS<N>US
C CSync LockQ-MCS LockQ-MTX

Description Global MCS
lock

VNI fine-grained
locking with MCS

Lockless
Software

offloading
HMCS lock +
O(1) wakeup

VNI granularity
with DSM-

Synch

VNI granularity
with MCS-

based LcokQ

VNI granularity
with Pthread
mutex-based

LockQ

Advice to Users: NUMA-aware threading is
hard, simplify your life with one process per NUMA-

node or socket

CPU SACRIFICES TEST WITH THE SNAP PROXY-APP
Label Global Per-VNI Offload HMCS<N>US

C CSync LockQ-MCS LockQ-MTX

Description Global MCS
lock

VNI fine-grained
locking with MCS

Lockless
Software

offloading
HMCS lock +
O(1) wakeup

VNI granularity
with DSM-

Synch

VNI granularity
with MCS-

based LcokQ

VNI granularity
with Pthread
mutex-based

LockQ

●

●

●
●

●

●

●

0

20

40

60

80

5 10 15
Numer of Processes per Node (PPN)

Tr
an

sp
or

t S
we

ep
 (s

ec
on

ds
)

●

Global
Per−VNI

Offload
HMCS<2>USC

CSync
LockQ−MCS

LockQ−MTX

Performance with the "Transport Sweep" stage of SNAP on
16 Broadwell nodes over Intel OmniPath with problem size
{nx,ny,nz} = {128,72,64} with respect to PPN

• SNAP (https://github.com/losalamos/snap) proxy
application

• Models the PARTISN particle transport application
• Wavefront communication pattern with two-sided

communication
• Tuning Processes per Node (PPN)

- Standard practice
- Reduces inter-NUMA-node cache traffic
- All methods perform best at PPN=6
- Offload up to 2x degradation from over

sacrificing CPU resources

Optimal

https://github.com/losalamos/snap

WORST-CASE CONTENTION WITH GRAPH500
Label Global Per-VNI Offload HMCS<N>US

C CSync LockQ-MCS LockQ-MTX

Description Global MCS
lock

VNI fine-grained
locking with MCS

Lockless
Software

offloading
HMCS lock +
O(1) wakeup

VNI granularity
with DSM-

Synch

VNI granularity
with MCS-

based LcokQ

VNI granularity
with Pthread
mutex-based

LockQ

Graph500 strong-scaling results on the Broadwell-
OmniPath cluster with 35 threads per MPI process with
respect to the total number of threads.

• Graph500 Benchmark (graph500.org)
• Core kernel: breadth-first search
• Updated to perform computation and communication

concurrently by threads [1]
• Communication initiation: nonblocking point-to-point
• Completion detection: MPI_Test
• LockQ outperforms CSync and existing lock-based

methods
• Offload significantly outperforms every other method
• Bottlneck: progress in MPI_Test

- Impossible to beat Offload (only check local flag)
- Still nonblocking progress + exponential backoff

in offload needs improvements

0e+00

1e+09

2e+09

3e+09

4e+09

2240 4480
Total Number of Threads

Pe
rfo

rm
an

ce
 (T

EP
/s

)

Global Per−VNI Offload HMCS<2>USC
CSync LockQ−MCS LockQ−MTX Offload−P

Offload-P

Lockless Software offloading + application
threads call progress

Amer et al. "Characterizing MPI and hybrid MPI+ Threads applications at scale: case study with BFS." CCGrid’15

http://graph500.org/

SUMMARY
• LockQ takes advantage of software combining for scalability
• Leverages MPI semantics to relax synchronization
• Results

- High throughput without hardwire knowledge
- Asynchronous nonblocking calls for latency hiding and communication

overlapping
• LockQ already released in MPICH 3.3 (if you want to try it out)
• Nonblocking progress management insufficient

- Make MPI_Test family of calls scale is still an open problem
• Evaluation with multiple VNIs for further insight

ACKNOWLEDGMENT
• ICS Organization and Program committees

• Funding

- This research was supported by the Exascale Computing Project (17-SC-20-SC),
a collaborative effort of the U.S. Department of Energy Office of Science and the
National Nuclear Security Administration, and by the U.S. Department of Energy,
Office of Science, under Contract DE-AC02-06CH11357

• Resources

- We gratefully for the computing resources provided and operated by the Laboratory
Computing Resource Center (LCRC) and by the Joint Laboratory for System
Evaluation (JLSE) at Argonne National Laboratory.

