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CONTEXT: THREADS ⇢ MPI ⇢ NETWORK INTERFACE
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APPLICATION THREADS-MPI INTERACTION
for (i=0; i<100; i++) 
{ 
    compute(buf[i]); 
    MPI_Send(&buf[i],…); 
}

#pragma omp parallel for 
for (i=0; i<100; i++) 
    compute(buf[i]); 

MPI_Send(buf,…);

#pragma omp parallel for 
for (i=0; i<100; i++) { 
    compute(buf[i]); 
    #pragma omp critical 
    MPI_Send(&buf[i],…); 
}

#pragma omp parallel for 
for (i=0; i<100; i++) { 
    compute(buf[i]); 
    MPI_Send(&buf[i],…); 
}
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APPLICATION THREADS-MPI INTERACTION
for (i=0; i<100; i++) 
{ 
    compute(buf[i]); 
    MPI_Send(&buf[i],…); 
}

#pragma omp parallel for 
for (i=0; i<100; i++) 
    compute(buf[i]); 

MPI_Send(buf,…);

#pragma omp parallel for 
for (i=0; i<100; i++) { 
    compute(buf[i]); 
    #pragma omp critical 
    MPI_Send(&buf[i],…); 
}

#pragma omp parallel for 
for (i=0; i<100; i++) { 
    compute(buf[i]); 
    MPI_Send(&buf[i],…); 
}

MPI_THREAD_MULTIPLE

MPI_THREAD_SERIALIZED

MPI_THREAD_FUNNELED

MPI_THREAD_SINGLE

MPI Process
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MPI 3.1 requirement 
- Thread safety (mutual exclusion) 
- Progress (blocking calls only 

block caller thread)



NETWORK RESOURCES: MAJOR HOT SPOT
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VNIi = f(Ti)?

• Not always possible to guarantee independent VNIs for threads 
- Insufficient network resources (multiplexing necessary) 
- Application constraints (e.g., load balancing network traffic across communicators, tags, etc.) 
- Lack of user control over thread-VNI mapping 

‣ Current MPI libraries best effort mapping (blindly mapping comms/tags/wins to VNIs) 
‣ MPI Endpoints still not standard 



CHALLENGE: NO CONTROL OVER CONCURRENCY
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• Threads belong to the user application, not MPI 

• Synchronization algorithms that assume N threads won’t work



SIMPLIFICATION: SINGLE VNI FOR ALL THREADS
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HISTORY
MPI Thread Safety Models 



THREAD SAFETY MODELS
• Abstract models 

• Capture how thread safety is managed 

- Critical section granularity 

- Access order (e.g., fairness) 

- Wait on completion synchronization model (e.g., spin on flag, lock acquisition, 
condition variable, etc.) 

• Ideally void of technical details (e.g., locking algorithm, atomic operations, etc.) 

• Examples of models 

• Global lock 

• Per-object locking 

• Lockless offloading



MOST BASIC THREAD_MULTIPLE MODEL

MPI_Wait (…,*req) { 
   
   while (!completed(req)) { 
      network_progress(); 
     
   } 
   free(req); 
   req = REQUEST_NULL; 
   
}

MPI_Isend (…,*req) { 
   
   request_create(req); 
   network_isend(…,req); 
   
}

MPI

APPLICATION

NETWORK 
HARDWARE

#pragma omp parallel for 
for (i=0; i<100; i++) { 
    compute(buf[i]); 
    MPI_Isend(&buf[i],…, &req[i]); 
} 
#pragma omp parallel for 
for (i=0; i<100; i++) 
   MPI_Wait(…, &req[i]);



MOST BASIC THREAD_MULTIPLE MODEL

MPI_Wait (…,*req) { 
   
   while (!completed(req)) { 
      network_progress(); 

   } 
   free(req); 
   req = REQUEST_NULL; 
   
}

MPI_Isend (…,*req) { 
   
   request_create(req); 
   network_isend(…,req); 
   
}

• Not thread-safe. Threads can corrupt 

1. Hardware network state 

2. User buffers 

3. Request objects 

4. …

#pragma omp parallel for 
for (i=0; i<100; i++) { 
    compute(buf[i]); 
    MPI_Isend(&buf[i],…, &req[i]); 
} 
#pragma omp parallel for 
for (i=0; i<100; i++) 
   MPI_Wait(…, &req[i]);



MOST BASIC THREAD_MULTIPLE MODEL

MPI_Wait (…,*req) { 
   lock_acquire(L); 
   while (!completed(req)) { 
      network_progress(); 
      if (!completed(req)) { 
         lock_release(L); 
         /*pause/yield*/ 
         lock_acquire(L); 
      } 
   } 
   free(req); 
   req = REQUEST_NULL; 
   lock_acquire(L); 
}

MPI_Isend (…,*req) { 
   lock_acquire(L); 
   request_create(req); 
   network_isend(…,req); 
   lock_release(L); 
}

#pragma omp parallel for 
for (i=0; i<100; i++) { 
    compute(buf[i]); 
    MPI_Isend(&buf[i],…, &req[i]); 
} 
#pragma omp parallel for 
for (i=0; i<100; i++) 
   MPI_Wait(…, &req[i]);

• Simplest MPI-compliant design 
- Single API level lock (L) 
- Release lock in blocking calls to let other threads 

progress



MOST BASIC THREAD_MULTIPLE MODEL

MPI_Wait (…,*req) { 
   lock_acquire(L); 
   while (!completed(req)) { 
      network_progress(); 
      if (!completed(req)) { 
         lock_release(L); 
         /*pause/yield*/ 
         lock_acquire(L); 
      } 
   } 
   free(req); 
   req = REQUEST_NULL; 
   lock_acquire(L); 
}

MPI_Isend (…,*req) { 
   lock_acquire(L); 
   request_create(req); 
   network_isend(…,req); 
   lock_release(L); 
}

• Simplest MPI-compliant design 
- Single API level lock (L) 
- Release lock in blocking calls to let other threads 

progress 
• Value 

- Simplicity (less error prone, easy to maintain) 
- Low overheads under zero contention 

• Drawbacks 
- No internal concurrency 
- Prone to serialization and contention 
- Lack of asynchrony due to lock acquisitions

#pragma omp parallel for 
for (i=0; i<100; i++) { 
    compute(buf[i]); 
    MPI_Isend(&buf[i],…, &req[i]); 
} 
#pragma omp parallel for 
for (i=0; i<100; i++) 
   MPI_Wait(…, &req[i]);



FINE-GRAINED LOCKING MODELS

MPI_Wait (…,*req) { 
   while (!completed(req)) { 
      lock_acquire(net_L); 
      network_progress(); 
      lock_release(net_L); 
      /*pause/yield*/ 
   } 
   lock_acquire(req_L); 
   free(req); 
   req = REQUEST_NULL; 
   lock_acquire(req_L); 
}

MPI_Isend (…,*req) { 
   lock_acquire(req_L); 
   request_create(req); 
   lock_release(req_L); 
   lock_acquire(net_L); 
   network_isend(…,req); 
   lock_release(net_L); 
}

Re

• Eliminate the coarse-grained global lock 
- Independent objects ⇢ separate critical sections 
- Single lock, per-object locks, locks per class of objects, etc. 

• Value 
- More internal concurrency ⇢ less serialization/contention 

• Drawbacks 
- Complexity and overheads grow with the number of critical 

sections 
- Hot spots still possible (all threads may funnel traffic through 

same VNI) 
- Lack of asynchrony due to lock acquisitions 

• Instances: Dózsa et al. [1], Balaji et al. [2], Kandalla et al. [3]
[1] Gábor Dózsa et al. Enabling Concurrent Multithreaded MPI Communication on Multicore Petascale Systems. (EuroMPI’10)
[2] Pavan Balaji et al. Fine-Grained Multithreading Support for Hybrid Threaded MPI Programming. IJHPCA (2010)
[3] Krishna Kandalla et al. Optimizing Cray MPI and SHMEM Software Stacks for Cray-XC Supercomputers based on Intel KNL Processors. Cray User Group (2016).

#pragma omp parallel for 
for (i=0; i<100; i++) { 
    compute(buf[i]); 
    MPI_Isend(&buf[i],…, &req[i]); 
} 
#pragma omp parallel for 
for (i=0; i<100; i++) 
   MPI_Wait(…, &req[i]);



CONTENTION MANAGEMENT MODELS

MPI_Wait (…,*req) { 
   lock_acquire(L); 
   if (!completed(req)) 
      cond_wait(req.c, L); 

   while (!completed(req)) { 
      req2 = network_cq_poll(); 
      cond_signal(req2.c); 
   } 
   free(req); 
   req = REQUEST_NULL; 
   lock_acquire(L); 
}

MPI_Isend (…,*req) { 
   lock_acquire(L); 
   request_create(req); 
   network_isend(…,req); 
   lock_release(L); 
}

#pragma omp parallel for 
for (i=0; i<100; i++) { 
    compute(buf[i]); 
    MPI_Isend(&buf[i],…, &req[i]); 
} 
#pragma omp parallel for 
for (i=0; i<100; i++) 
   MPI_Wait(…, &req[i]);

• Advanced critical section management on contention 
- Orthogonal to critical section granularity 
- Goal: maximize work inside critical sections 
- Example: O(1) instead of O(N) blind wakeup 

• Value 
- No added complexity 
- Demonstrated high performance even with coarse-grained 

locking 
• Drawbacks 

- Serialization and lack of concurrency 
- Lack of asynchrony due to lock acquisitions 

• Instances: Dang et al [1] and Amer et al. [2]

O(1) 
wakeup

[1] Vu Dang et al. Advanced Thread Synchronization for Multithreaded MPI Implementations. (CCGRID’17)
[2] Abdelhalim Amer et al. Lock Contention Management in Multithreaded MPI. ACM Transactions on Parallel Computing (TOPC) 2019 

Just for illustration 
purposes. Incomplete and 
incorrect. See Dang et al. 
[1] for complete algorithm.

Re



LOCKLESS OFFLOADING MODEL

MPI_Wait (…,*req) { 
   
   while (!completed(req)) { 
      /* spin on the 
        Request local flag*/ 
   } 
   lock_acquire(req_L); 
   free(req); 
   req = REQUEST_NULL; 
   lock_acquire(req_L); 
}

MPI_Isend (…,*req) { 
   lock_acquire(req_L); 
   request_create(req); 
   lock_release(req_L); 
   descr_create(…,req,&d); 
   network_post(…,d); 
}

• Offloading to dedicated communication threads 

- Application threads offload operations to communication threads 
- Lockless: 1) post network operations, 2) wait on a flag on 

synchronization 
- Asynchronous progress (more than just a thread safety 

model) 
• Value: Highest possible concurrency 
• Drawbacks 

- Must sacrifice CPU resources 
- Forces enqueue operation even with zero contention 

• Instances: Kumar et al. [1], Vaidyanathan et al. [2]
[1] Sameer Kumar et al. PAMI: A Parallel Active Message Interface for the Blue Gene/Q Supercomputer. (IPDPS ’12).
[2] Karthikeyan Vaidyanathan et al. Improving Concurrency and Asynchrony in Multithreaded MPI Applications Using Software Offloading. (SC’15) 
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on performance 
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HISTORICAL SUMMARY
Fine-Grained 

Locking
Lock 

Contention 
Management

Offloading

Nonblocking 
Operations

No Contention
Overhead and 

complexity grows 
with the number 
of critical sections

Simplest and 
lowest overhead

High offloading 
overhead

High 
Contention

Performance 
improvements  from 

increased 
concurrency

High performance 
from high 

throughput locks

High performance 
proportional to 

queue efficiency

Waiting in 
Blocking 

Operations

No Contention
Overhead and 

complexity grows 
with the number 
of critical sections

Low overhead Lowest overhead 
(only check local flag)

High 
Contention

Bad performance 
from blind lock 

ownership 
passing

High performance 
O(1) wakeup.  

Overhead of 
progress calls

Lowest overhead 
(only check local flag, 

no progress calls)

Asynchrony of Nonblocking 
Calls

May block on lock 
acquisition

May block on lock 
acquisition Asynchronous

CPU  
Resource Consumption Nothing special Nothing special

CPU resources 
grow with the 

number of 
dedicated threads

Hardware Awareness Can be Agnostic Necessary for high 
throughput locks Can be agnostic



NEW SOFTWARE COMBINING MODELS (1/2)
Fine-Grained 

Locking
Lock 

Contention 
Management

Offloading CSync

Nonblocking 
Operations

No Contention
Overhead and 

complexity grows 
with the number 
of critical sections

Simplest and 
lowest overhead

High offloading 
overhead

High offloading 
overhead

High 
Contention

Performance 
improvements  from 

increased 
concurrency

High performance 
from high 

throughput locks

High performance 
proportional to 
queue efficiency

High performance 
proportional to 

queue efficiency

Waiting in 
Blocking 

Operations

No Contention
Overhead and 

complexity grows 
with the number 
of critical sections

Low overhead Lowest overhead 
(only check local flag) Low overhead

High 
Contention

Bad performance 
from blind lock 

ownership 
passing

High performance 
O(1) wakeup.  

Overhead of 
progress calls

Lowest overhead 
(only check local flag, 

no progress calls)
Wasteful

Asynchrony of Nonblocking 
Calls

May block on lock 
acquisition

May block on lock 
acquisition Asynchronous

May block on 
pending 

operation or lock 
acquisition

CPU  
Resource Consumption Nothing special Nothing special

CPU resources 
grow with the 

number of 
dedicated threads

Nothing special

Hardware Awareness Can be Agnostic Necessary for high 
throughput locks Can be agnostic Can be agnostic

Software Combining



NEW SOFTWARE COMBINING MODELS (2/2)
Fine-Grained 

Locking
Lock 

Contention 
Management

Offloading CSync LockQ

Nonblocking 
Operations

No Contention
Overhead and 

complexity grows 
with the number 

of critical sections

Simplest and 
lowest overhead

High offloading 
overhead

High offloading 
overhead

Simple and low 
overhead

High 
Contention

Performance 
improvements  from 

increased 
concurrency

High performance 
from high 

throughput locks

High performance 
proportional to 

queue efficiency

High performance 
proportional to 

queue efficiency

High performance 
proportional to 

queue efficiency

Waiting in 
Blocking 

Operations

No Contention
Overhead and 

complexity grows 
with the number 

of critical sections
Low overhead Lowest overhead 

(only check local flag) Low overhead Low overhead

High 
Contention

Bad performance 
from blind lock 

ownership 
passing

High performance 
O(1) wakeup.  

Overhead of 
progress calls

Lowest overhead 
(only check local flag, 

no progress calls)
Wasteful Not wasteful but 

unsatisfactory

Asynchrony of Nonblocking 
Calls

May block on lock 
acquisition

May block on lock 
acquisition Asynchronous

May block on 
pending 

operation or lock 
acquisition

Asynchronous

CPU  
Resource Consumption Nothing special Nothing special

CPU resources 
grow with the 

number of 
dedicated threads

Nothing special Nothing special

Hardware Awareness Can be Agnostic Necessary for high 
throughput locks Can be agnostic Can be agnostic Can be agnostic

Software Combining



SOFTWARE 
COMBINING
Description and Example



SOFTWARE COMBINING
• Goal: scalability 

• Principle 
• Lock + announcement list 
• Waiters announce their work requests 

• Lock owner combines them (executes 
on behalf of waiters) 

• Most implementations are hardware 
agnostic 

• Several implementations 

• Many scalable applications especially for 
concurrent data structures 

- Lists, queues, stacks, etc.
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1
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Wait
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Combiner Thread after Wait

Unlock
1
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Lock



DSM-SYNCH: EXTENDING MCS WITH COMBINING
• Probably the most popular mutual exclusion algorithm (over 1.5K citations!) 

• Mellor-Crummey & Scott (1991): “Algorithms for scalable synchronization on 
shared-memory multiprocessors”. ACM Transactions on Computer Systems. 

• Queue-based lock algorithm

L3
L2L2

T3T2

L3
L2L2

T1T0

Lock = Tail



DSM-SYNCH: EXTENDING MCS WITH COMBINING
• Probably the most popular mutual exclusion algorithm (over 1.5K citations!) 

• Mellor-Crummey & Scott (1991): “Algorithms for scalable synchronization on 
shared-memory multiprocessors”. ACM Transactions on Computer Systems. 

• Queue-based lock algorithm
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DSM-SYNCH: EXTENDING MCS WITH COMBINING
• Probably the most popular mutual exclusion algorithm (over 1.5K citations!) 

• Mellor-Crummey & Scott (1991): “Algorithms for scalable synchronization on 
shared-memory multiprocessors”. ACM Transactions on Computer Systems. 

• Queue-based lock algorithm
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DSM-SYNCH: EXTENDING MCS WITH COMBINING
• Probably the most popular mutual exclusion algorithm (over 1.5K citations!) 

• Mellor-Crummey & Scott (1991): “Algorithms for scalable synchronization on 
shared-memory multiprocessors”. ACM Transactions on Computer Systems. 

• Queue-based lock algorithm

L3
L2L2

T3T2

L3
L2L2

T1T0

Lock = Tail

Ownership Reclamation

Lock owner can safely 
traverse wait queue



DSM-SYNCH: EXTENDING MCS WITH COMBINING
• Extend an MCS queue node with a request or work descriptor 
• Wait queue has two purposes 

1. Holds waiting thread nodes as in MCS 
2. Works as an announcement list to publish work descriptors  

• Lock owner executes operations found in the queue

L3
L2L2

T3T2

L3
L2L2

T1T0

Lock = Tail

d
apply(d) 
mark_complete(d)

Fatourou, Panagiota, and Nikolaos D. Kallimanis. "Revisiting the combining synchronization technique." In ACM SIGPLAN Notices (PPoPP’12)



PERFORMANCE EXAMPLE WITH A FIFO QUEUE

Fatourou, Panagiota, and Nikolaos D. Kallimanis. "Revisiting the combining synchronization technique." In ACM SIGPLAN Notices (PPoPP’12)

Enqueue Dequeue

mcs_acquire()

desc_create(&enq_d) 
dsm_sync(enq_d)

mcs_release()

mcs_acquire()mcs_acquire()

mcs_release()

dsm_sync(deq_d)
desc_create(&deq_d)



PERFORMANCE EXAMPLE WITH A FIFO QUEUE
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Fatourou, Panagiota, and Nikolaos D. Kallimanis. "Revisiting the combining synchronization technique." In ACM SIGPLAN Notices (PPoPP’12)

Enqueue Dequeue

mcs_acquire()

desc_create(&enq_d) 
dsm_sync(enq_d)

mcs_release()

mcs_acquire()mcs_acquire()

mcs_release()

dsm_sync(deq_d)
desc_create(&deq_d)

2.75x

Enq/Deq throughput on 56-Core Intel Skylake at 2.5GHz



CSYNC AND 
LOCKQ 
MODELS 
Software Combining at the Rescue



CSYNC: DIRECT SOFTWARE COMBINING APPLICATION

MPI_Wait (…,*req) { 
   while (!completed(req)) 
   { 
      lock_acquire(net_L); 
      network_progress(); 
      lock_release(net_L); 
      /*pause/yield*/ 
   } 
   lock_acquire(req_L); 
   free(req); 
   req = REQUEST_NULL; 
   lock_acquire(req_L); 
}

MPI_Isend (…,*req) { 
   lock_acquire(req_L); 
   request_create(req); 
   lock_release(req_L); 
   lock_acquire(net_L); 
   network_isend(…,req); 
   lock_release(net_L); 
}

MPI_Wait (…,*req) { 
   while (!completed(req)) { 
      descr_create(PROGRESS,&d); 
      dsm_synch(net_L, d); 
      /*pause/yield*/ 
   } 
   lock_acquire(req_L); 
   free(req); 
   req = REQUEST_NULL; 
   lock_acquire(req_L); 
}

MPI_Isend (…,*req) { 
   lock_acquire(req_L); 
   request_create(req); 
   lock_release(req_L); 
   descr_create(ISEND,…,&d); 
   dsm_synch(net_L, d); 
}



CSYNC: DIRECT SOFTWARE COMBINING APPLICATION

MPI_Wait (…,*req) { 
   while (!completed(req)) 
   { 
      lock_acquire(net_L); 
      network_progress(); 
      lock_release(net_L); 
      /*pause/yield*/ 
   } 
   lock_acquire(req_L); 
   free(req); 
   req = REQUEST_NULL; 
   lock_acquire(req_L); 
}

MPI_Isend (…,*req) { 
   lock_acquire(req_L); 
   request_create(req); 
   lock_release(req_L); 
   lock_acquire(net_L); 
   network_isend(…,req); 
   lock_release(net_L); 
}

MPI_Wait (…,*req) { 
   while (!completed(req)) { 
      descr_create(PROGRESS,&d); 
      dsm_synch(net_L, d); 
      /*pause/yield*/ 
   } 
   lock_acquire(req_L); 
   free(req); 
   req = REQUEST_NULL; 
   lock_acquire(req_L); 
}

MPI_Isend (…,*req) { 
   lock_acquire(req_L); 
   request_create(req); 
   lock_release(req_L); 
   descr_create(ISEND,…,&d); 
   dsm_synch(net_L, d); 
}

apply (*d) { 
   switch(d->op) { 
   case ISEND: 
     network_isend(…); 
   case PROGRESS: 
     network_progress(…);    
   } 
}

Combiner thread 
internal call



LIMITATIONS OF CSYNC

MPI_Wait (…,*req) { 
   while (!completed(req)) { 
      descr_create(PROGRESS,&d); 
      dsm_synch(net_L, d); 
      /*pause/yield*/ 
   } 
   lock_acquire(req_L); 
   free(req); 
   req = REQUEST_NULL; 
   lock_acquire(req_L); 
}

MPI_Isend (…,*req) { 
   lock_acquire(req_L); 
   request_create(req); 
   lock_release(req_L); 
   descr_create(ISEND,…,&d); 
   dsm_synch(net_L, d); 
}

Unbounded waiting 
wastes asynchrony of 

nonblocking calls
2

Software offloading even 
under no contention 

(descriptor creation + 
enq/deq overhead)

1

Combining queue polluted 
by progress calls (low 

priority operation)
3



ELIMINATING UNNECESSARY OFFLOADING
• Don’t post a work descriptor 

unconditionally 
• Use an empty node (no descriptor 

creation) 
• Try to acquire the lock 

- If successful 
‣ Combine operations 
‣ If threshold of combining 

reached, enqueue my operation 
‣ Else execute operation and then 

leave 
- Lock acquisition failure 

‣ Post work descriptor 
‣ Wait

Signal 
Completion

Post

Execute

1

2

3
4

Lock

Announcement list

Signal 
Completion

Post

Execute

1

2
3

Trylock

Announcement list



POST AND LEAVE BREAKS THE SYSTEM
• Keeping nonblocking calls 

asynchronous improves latency 
hiding and overlapping 
opportunities 

• Only way is to leave after posting a 
work descriptor on lock acquisition 
failure  
- Thread gives up lock ownership 

passing and combining 
responsibilities 

- Work descriptors and threads 
may starve in the queue

MPI_Isend (…,*req) { 
   lock_acquire(req_L); 
   request_create(req); 
   lock_release(req_L); 
   descr_create(ISEND,…,&d); 
   dsm_synch(net_L, d); 
}

Lock ownership passing
Completion signal

Lock ownership 
passing

Starved nodes

Post and leave



MPI_Isend (…,*req) { 
   lock_acquire(req_L); 
   request_create(req); 
   lock_release(req_L); 
   if (trylock(net_L)) { 
      combine(); 
      network_isend(…); 
      lock_release(net_L); 
   } else { 
      descr_create(ISEND,…,&d); 
      post(d); 
   } 
}

SOLUTION: DECOUPLED LOCK-LIST STRUCTURE
• Fundamental issue is coupled lock-

list data structure 
• Decoupling data structure 

- No waiting necessary in a 
nonblocking call 

- Post and leave, and thus keep 
nonblocking calls 
asynchronous 

• Flexibility 
- Any lock algorithm can be used 
- Any concurrent list data structure 

can be used

Post
1

Trylock
2

Any lock 
algorithm

Any 
concurrent list 
data structure



RACES AND MPI COMPLETION SEMANTICS
• Work descriptors may never be 

executed due to races 
• Solution: rely on MPI completion 

semantics as last resort 
- Request completion: MPI_Wait 

and MPI_Test family   
- RMA: synchronization calls (e.g., 

MPI_Win_flush, 
MPI_Win_unlock, etc.)

T1 T2

               trylock() 
               combine() 
               network_isend() 
trylock() 
               lock_release() 
desc_create(d) /* Leave */ 
post(d) 
/* Leave */ 

Success

Fail

d may never be 
executed

MPI_Wait (…,*req) { 
   while (!completed(req)) 
   { 
      lock_acquire(net_L); 
      combine(); 
      network_progress(); 
      lock_release(net_L); 
      /*pause/yield*/ 
   } 
   … 
}



MPI_Isend (…,*req) { 
   lock_acquire(req_L); 
   request_create(req); 
   lock_release(req_L); 
   if (trylock(net_L)) { 
      combine(); 
      network_isend(…); 
      lock_release(net_L); 
   } else { 
      descr_create(ISEND,…,&d); 
      post(d); 
   } 
}

PUTTING THEM TOGETHER: LOCKQ AND DETAILS
• LockQ 

- Avoids unnecessary offloading under no 
contention 

- Keeps nonblocking asynchronous  
- Combing queue is not polluted by progress calls 

• Combining thread doing too much? 
- User-controllable combining threshold 
- Combining responsibility changes over time 

• How about nonblocking progress calls like 
MPI_Test? 
- Asynchronous with trylock 
- Exponential backoff to reduce contention 

• Are nonblocking calls made blocking with 
last resort combining? 
- Yes, but rare in practice

MPI_Wait (…,*req) { 
   while (!completed(req)) 
   { 
      lock_acquire(net_L); 
      combine(); 
      network_progress(); 
      lock_release(net_L); 
      /*pause/yield*/ 
   } 
   … 
}



EVALUATION
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●Global Per−VNI Offload HMCS<2>USC HMCS<3>USC CSync LockQ−MCS LockQ−MTX

64B message rate between two 56-Core Intel Skylake nodes at 2.5GHz over Intel Omnipath

Label Global Per-VNI Offload HMCS<N>US
C CSync LockQ-MCS LockQ-MTX

Description Global MCS 
lock

VNI fine-grained 
locking with MCS

Lockless 
Software 

offloading
HMCS lock + 
O(1) wakeup

VNI granularity 
with DSM-

Synch

VNI granularity 
with MCS-

based LcokQ

VNI granularity 
with Pthread 
mutex-based 

LockQ



MESSAGE RATE VS. STATE-OF-THE-ART

●

●

●
●

●
●

●
● ● ●

●

●

●

● ● ●

●

● ● ● ● ● ●
●

● ●

●

●

●
●

●
●

●

●
● ●

● ●
●

● ● ●

●

●

●
●

●
●

Irecv Isend Put

2 8 32 128 2 8 32 128 2 8 32 128

524288

1048576

2097152

Number of Threads per MPI Process

M
es

sa
ge

 R
at

e 
(m

sg
s/

s)

●Global Per−VNI Offload HMCS<2>USC HMCS<3>USC CSync LockQ−MCS LockQ−MTX

64B message rate between two 56-Core Intel Skylake nodes at 2.5GHz over Intel Omnipath

Label Global Per-VNI Offload HMCS<N>US
C CSync LockQ-MCS LockQ-MTX

Description Global MCS 
lock

VNI fine-grained 
locking with MCS

Lockless 
Software 

offloading
HMCS lock + 
O(1) wakeup

VNI granularity 
with DSM-

Synch

VNI granularity 
with MCS-

based LcokQ

VNI granularity 
with Pthread 
mutex-based 

LockQ

LockQ single threaded 
close to ideal. Offload 

and CSync highest 
overhead
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●Global Per−VNI Offload HMCS<2>USC HMCS<3>USC CSync LockQ−MCS LockQ−MTX

64B message rate between two 56-Core Intel Skylake nodes at 2.5GHz over Intel Omnipath

Label Global Per-VNI Offload HMCS<N>US
C CSync LockQ-MCS LockQ-MTX

Description Global MCS 
lock

VNI fine-grained 
locking with MCS

Lockless 
Software 

offloading
HMCS lock + 
O(1) wakeup

VNI granularity 
with DSM-

Synch

VNI granularity 
with MCS-

based LcokQ

VNI granularity 
with Pthread 
mutex-based 

LockQ

Single NUMA node 
competitive 

performance with 
software combining.

CSynch: insufficient list 
depth (partially due to 

pollution from progress)

Polling for progress 
degrades scalability
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●Global Per−VNI Offload HMCS<2>USC HMCS<3>USC CSync LockQ−MCS LockQ−MTX

64B message rate between two 56-Core Intel Skylake nodes at 2.5GHz over Intel Omnipath

Label Global Per-VNI Offload HMCS<N>US
C CSync LockQ-MCS LockQ-MTX

Description Global MCS 
lock

VNI fine-grained 
locking with MCS

Lockless 
Software 

offloading
HMCS lock + 
O(1) wakeup

VNI granularity 
with DSM-

Synch

VNI granularity 
with MCS-

based LcokQ

VNI granularity 
with Pthread 
mutex-based 

LockQ

Significant 
degradation across 

NUMA nodes  except 
for Offloading
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●Global Per−VNI Offload HMCS<2>USC HMCS<3>USC CSync LockQ−MCS LockQ−MTX

64B message rate between two 56-Core Intel Skylake nodes at 2.5GHz over Intel Omnipath

Label Global Per-VNI Offload HMCS<N>US
C CSync LockQ-MCS LockQ-MTX

Description Global MCS 
lock

VNI fine-grained 
locking with MCS

Lockless 
Software 

offloading
HMCS lock + 
O(1) wakeup

VNI granularity 
with DSM-

Synch

VNI granularity 
with MCS-

based LcokQ

VNI granularity 
with Pthread 
mutex-based 

LockQ

Advice to Users: NUMA-aware threading is 
hard, simplify your life with one process per NUMA-

node or socket 



CPU SACRIFICES TEST WITH THE SNAP PROXY-APP
Label Global Per-VNI Offload HMCS<N>US

C CSync LockQ-MCS LockQ-MTX

Description Global MCS 
lock

VNI fine-grained 
locking with MCS

Lockless 
Software 

offloading
HMCS lock + 
O(1) wakeup

VNI granularity 
with DSM-

Synch

VNI granularity 
with MCS-

based LcokQ

VNI granularity 
with Pthread 
mutex-based 

LockQ
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Performance with the "Transport Sweep" stage of SNAP on 
16 Broadwell nodes over Intel OmniPath with problem size 
{nx,ny,nz} = {128,72,64} with respect to PPN

• SNAP (https://github.com/losalamos/snap) proxy 
application 

• Models the PARTISN particle transport application 
• Wavefront communication pattern with two-sided 

communication 
• Tuning Processes per Node (PPN) 

- Standard practice 
- Reduces inter-NUMA-node cache traffic 
- All methods perform best at PPN=6 
- Offload up to 2x degradation from over 

sacrificing CPU resources

Optimal

https://github.com/losalamos/snap


WORST-CASE CONTENTION WITH GRAPH500
Label Global Per-VNI Offload HMCS<N>US

C CSync LockQ-MCS LockQ-MTX

Description Global MCS 
lock

VNI fine-grained 
locking with MCS

Lockless 
Software 

offloading
HMCS lock + 
O(1) wakeup

VNI granularity 
with DSM-

Synch

VNI granularity 
with MCS-

based LcokQ

VNI granularity 
with Pthread 
mutex-based 

LockQ

Graph500 strong-scaling results on the Broadwell-
OmniPath cluster with 35 threads per MPI process with 
respect to the total number of threads.

• Graph500 Benchmark (graph500.org) 
• Core kernel: breadth-first search 
• Updated to perform computation and communication 

concurrently by threads [1] 
• Communication initiation: nonblocking point-to-point 
• Completion detection: MPI_Test 
• LockQ outperforms CSync and existing lock-based 

methods 
• Offload significantly outperforms every other method 
• Bottlneck: progress in MPI_Test 

- Impossible to beat Offload (only check local flag) 
- Still nonblocking progress + exponential backoff 

in offload needs improvements
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Lockless Software offloading + application 
threads call progress

Amer et al. "Characterizing MPI and hybrid MPI+ Threads applications at scale: case study with BFS." CCGrid’15

http://graph500.org/


SUMMARY
• LockQ takes advantage of software combining for scalability 
• Leverages MPI semantics to relax synchronization 
• Results 

- High throughput without hardwire knowledge 
- Asynchronous nonblocking calls for latency hiding and communication 

overlapping 
• LockQ already released in MPICH 3.3 (if you want to try it out) 
• Nonblocking progress management insufficient 

- Make MPI_Test family of calls scale is still an open problem 
• Evaluation with multiple VNIs for further insight
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