
Software Combining to Mitigate Multithreaded MPI Contention
Abdelhalim Amer
Argonne National

Laboratory
aamer@anl.gov

Charles Archer
Intel Corporation

charlesarcher@gmail.com

Michael Blocksome
Intel Corporation

michael.blocksome@intel.
com

Chongxiao Cao
Intel Corporation

chongxiao.cao@intel.com

Michael Chuvelev
Intel Corporation

michael.chuvelev@intel.
com

Hajime Fujita
Intel Corporation

hajime.fujita@intel.com

Maria Garzaran
Intel Corporation

maria.garzaran@intel.com

Yanfei Guo
Argonne National

Laboratory
yguo@anl.gov

Jeff R. Hammond
Intel Corporation

jeff.r.hammond@intel.com

Shintaro Iwasaki
The University of Tokyo

iwasaki@eidos.ic.i.u-tokyo.
ac.jp

Kenneth J. Raffenetti
Argonne National

Laboratory
rafenet@mcs.anl.gov

Mikhail Shiryaev
Intel Corporation

mikhail.shiryaev@intel.
com

Min Si
Argonne National

Laboratory
msi@anl.gov

Kenjiro Taura
The University of Tokyo
tau@eidos.ic.i.u-tokyo.ac.

jp

Sagar Thapaliya
Intel Corporation

sagar.thapaliya@intel.com

Pavan Balaji
Argonne National

Laboratory
balaji@anl.gov

Abstract
Efforts to mitigate lock contention from concurrent threaded

accesses to MPI have reduced contention through fine-grained
locking, avoided locking altogether by offloading communication
to dedicated threads, or alleviated negative side effects from con-
tention by using better lock management protocols. The blocking
nature of lock-based methods, however, wastes the asynchrony
benefits of nonblocking MPI operations, and the offloading model
sacrifices CPU resources and incurs unnecessary software offload-
ing overheads under low contention.

We propose new thread safety models, CSync and LockQ, based
on software combining, a form of software offloading without the re-
quirement for dedicated threads; a thread holding the lock combines
work of threads that failed their lock acquisitions. We demonstrate
that CSync, a direct application of software combining, improves
scalability but suffers from lack of asynchrony and incurs unneces-
sary offloading. LockQ alleviates these shortcomings by leveraging
MPI semantics to relax synchronization and reduce offloading re-
quirements. We present the implementation, analysis, and evalu-
ation of these models on a modern network fabric and show that
LockQ outperforms most existing thread safety models in low- and
high-contention regimes.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICS’19, June 26-28, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.

CCS Concepts
• Software and its engineering → General programming

languages; • Social and professional topics → History of pro-
gramming languages;

ACM Reference Format:
Abdelhalim Amer, Charles Archer, Michael Blocksome, Chongxiao Cao,
Michael Chuvelev, Hajime Fujita, Maria Garzaran, Yanfei Guo, Jeff R. Ham-
mond, Shintaro Iwasaki, Kenneth J. Raffenetti, Mikhail Shiryaev, Min Si,
Kenjiro Taura, Sagar Thapaliya, and Pavan Balaji. 2019. Software Combining
to Mitigate Multithreaded MPI Contention. In Proceedings of ACM Inter-
national Conference on Supercomputing 2019 (ICS’19). ACM, New York, NY,
USA, 13 pages.

Introduction
The Message Passing Interface (MPI) remains the predominant

programming system on distributed-memory high-performance
computing (HPC) platforms. Because of the inadequacy of the
message-passing model to program shared-memory parallel sys-
tems, however, MPI users are moving to hybrid models, MPI+X, that
leverage MPI for distributed-memory programming and another
programming system, X, such as OpenMP, suitable for shared mem-
ory [17]. In MPI+threads programming, concurrent thread accesses
to the MPI stack are allowed and supported by most production
MPI libraries. Although these libraries satisfy the functional re-
quirement of multithreaded MPI, however, most, if not all, suffer
from contention, which hinders application performance.

Among the major sources of contention is competition for lock
acquisition, since locks are the primary mechanism used by these
libraries to protect shared state. Several methods have been devel-
oped to mitigate lock contention issues and can be grouped into
three orthogonal approaches. The first relies on contention reduc-
tion through fine-grained critical sections and atomic operations
where needed (e.g., reference counting) [5, 9, 16, 19]. This approach,

1

ICS’19, June 26-28, 2019, Phoenix, AZ, USA Amer et al.

however, reduces but does not eliminate contention and provides
no remedy when it takes place. Blocking lock acquisitions also
introduces nondeterministic and often long delays for nonblocking
MPI operations, thus wasting their asynchrony benefits. The sec-
ond approach focuses on lock contention avoidance by eliminating
lock acquisitions on the critical path [10, 21, 28]. This is achieved
by using an offload model where application threads offload com-
munication operations to dedicated communication threads. This
model has two shortcomings: it requires dedicated communication
threads that compete with application threads for resources, and
the software offloading system incurs compulsory overheads even
when contention is nonexistent. The third approach aims at better
contention management; when contention takes place, it attempts
to reduce negative side effects by passing lock ownership to threads
with productive work [1, 3, 8]. This is achieved by leveraging MPI
internal knowledge to drive an adaptive locking protocol. This ap-
proach has also the asynchrony issue on nonblocking operations,
however, in addition to being less practical because it requires
hardware-aware custom lock implementations.

We propose new thread safety models based on software combin-
ing [11, 14, 24], a form of software offloading that does not require
dedicated threads; lock holders become the combiner threads that
execute work on behalf of threads that failed their lock acquisitions,
thus behaving similarly to dedicated communication threads of
software offloading methods. We first present CSync, an application
of the state-of-the-art DSM-Synch [11] software combining tech-
nique to communication operations, which required API extensions
for ease of integration. We demonstrate that CSync indeed signif-
icantly reduces scalability degradation but suffers from the same
asynchrony and offloading shortcomings of the lock-based methods
and software offloading, respectively. We then discuss the limits
of software combining techniques that rely on a coupled lock-list
data structure, and we propose an alternative model, LockQ, that
decouples lock and the corresponding list data structures and lever-
ages MPI semantics to (1) preserve asynchrony of MPI nonblocking
operations under practical assumptions and (2) avoid unnecessary
offloading. LockQ eliminates the unbounded synchronization delays
on performing nonblocking MPI operations; to our knowledge, it is
the first model that provides this progress property without relying
on dedicated communication threads.

We present the implementation, analysis, and comparative eval-
uation of six thread safety models—CSync, LockQ, and four other
models found in the literature—on a modern network fabric. Our ex-
perimental method includes communication-intensive benchmarks,
graph traversal and particle transport proxy applications, and an
integration of all the models in the same production MPI library.
Our results show that LockQ outperforms CSync and the offload
model under low contention. At high contention, LockQ performs
competitively against CSync and the offload model and significantly
outperforms the other methods while being hardware agnostic.

Background and Related Work

We describe in this section the subtle interaction between appli-
cation threads and MPI. We also define concepts and terminology
used throughout the paper, and we discuss the various contention-
mitigating thread safety models found in the literature.

MPI+Threads Interaction
MPI is a library specification that allows but does not require

concurrent multithreaded accesses from the MPI user. Given the
increasing number of hybrid MPI+threads applications, demand
for concurrent accesses to MPI has risen accordingly, resulting in
most production MPI libraries supporting this mode of access. MPI
defines two basic rules for concurrent accesses: thread safety and
progress guarantee. Libraries satisfying the latter rule guarantee
that a thread blocked within the MPI library does not obstruct the
progress of other threads. Other rules exist and derive from single-
threaded requirements but are less pertinent for the remainder of
this paper. For instance, collective operations on the same com-
municator must be issued in the same order by all processes; thus,
application threads involved in different collective operations on
the same communicator must synchronize outside MPI in order to
guarantee such ordering.

Terminology and Baseline
It is impractical to attempt a thorough review of the differences

between MPI libraries and the methods developed in the past two
decades to tackle thread safety issues in MPI. Instead, we group
the various approaches found in practice and in the literature into
what we call thread safety models and then illustrate how they are
implemented through simplified code snippets. Our algorithmic
descriptions will rely on low-level network (LLN) and thread safety
building blocks to implement the internals of an MPI library. Our
goals are simplicity and expressiveness to capture necessary details
while leaving out noncritical information. The following are the
assumptions and terminology used throughout the rest of the paper.

Low-Level Network.We assume that the MPI library calls in-
ternally a low-level network interface that is not thread safe; MPI,
as a result, has to protect such calls in order to avoid corruption
from multithreaded accesses to this API. We use LLN_ to prefix such
calls. In practice, this API can be seen as wrapping network fabric
calls, which are closer to the hardware, such as the OpenFabrics
Interfaces (OFI) [13] and Unified Communication X (UCX) [27], and
doing the necessary translation from MPI-level information to the
target low-level interface.

Critical Sections. To implement critical sections, we assume
a locking API that supports lock acquire and release operations
as well as a lock acquisition attempt operation. These opera-
tions are represented with the lock_acquire, lock_release, and
lock_tryacq calls, respectively. For instance, these could map to
the POSIX API calls pthread_mutex_lock, pthread_mutex_unlock,
and pthread_mutex_trylock calls, respectively.

Baseline Model. Here we consider the most basic model, yet
often adopted in practice, described using the above terminology
and assumptions as illustrated in Figure 1a. This model relies on a
global coarse-grained lock to protect every MPI call that accesses
a shared state. The code snippets throughout the paper will use a
nonblocking communication operation (MPI_Isend) and a blocking
progress operation (MPI_Wait) to drive the discussion. The lock (L)
ensures thread safety by requiring each MPI routine to acquire and
release the lock at the entry and exit of the routine, respectively.
MPI_Isend is required to create a user-visible request object (req at
line 3) and to translate the call to the network fabric (LLN_isend).
This model assumes the absence of asynchronous progress either

2

Software Combining to Mitigate Multithreaded MPI Contention ICS’19, June 26-28, 2019, Phoenix, AZ, USA

because the LLN does not support it or because the application
does not want to sacrifice CPU resources to enable it. As a result,
application threads have to drive progress manually when in the
MPI library (line 10). To respect MPI’s progress semantics, block-
ing operations have to release the lock if the operations they are
waiting for have not completed, in order to allow other threads to
progress (line 12).While waiting for completion, theMPI library can
optionally pause or yield the CPU to improve resource utilization.

As can be seen in this example, if two threads call MPI_Isend
and MPI_Wait in parallel, they will compete for the lock L. If
MPI_Wait holds the lock while there is no operation to complete,
MPI_Isend will block waiting for lock acquisition unnecessarily.
We consider MPI_Wait in this case as incurring unproductive lock
acquisitions and thus wasting the opportunity for communication
operations, such as MPI_Isend, to secure a productive lock acquisi-
tion in a timely manner. Moreover, waiting on a lock acquisition
in MPI_Isend might block for an unbounded number of steps, thus
wasting the asynchrony benefits of an MPI nonblocking call.

Survey of Existing Thread Safety Models
Themost efficient way to describe existing contention-mitigating

efforts is to depart from the coarse-grained locking model and show
how improvements are made over the baseline implementation
of MPI_Isend and MPI_Wait. The code snippets for these models
are illustrated in Figures 1b through 1d; the key differences with
respect to the coarse-grained model are highlighted with a colored
background.

Fine-Grained Locking. This approach aims at reducing con-
tention by shrinking the length of the critical sections. This is a
large category in practice because numerous ways exist to protect
shared states and objects (instances of this model can be found in
[5, 9, 16, 19]). One way is to use a single lock, but acquiring and
releasing the lock occur at fine-grained levels (e.g., just before touch-
ing a shared object). Another method is to use multiple locks where
each lock protects a different object or a class of objects. In Figure 1b,
we illustrate one way to reduce contention using fine-grained locks.
The responsibility of the global lock is split into two locks, req_L
and LLN_L, to independently protect request memory management
operations and LLN operations, respectively. This model has several
shortcomings, however. Contention can still take place in hotspots,
such as when multiple threads actively wait and contend for the
LLN_L lock. The overheads of this model in low-contention regimes
also grow with the number of locking operations on the critical
path; indeed, the locking operations incur overheads associated
with function calls (if not inlined), memory barriers, and atomic
operations that hurt instruction-level parallelism.

LLN Lockless Offloading. This model ensures contentionless
access to the LLN (Figure 1c). The bulk of the work is performed
by dedicated threads belonging to the LLN. Application threads
simply post communication operations and either leave (nonblock-
ing operation) or busy wait on a flag (blocking operation). The
application thread first creates a work descriptor (line 6) and uses
an LLN routine to post the descriptor (software offloading; usually
a lock-free enqueue operation). A communication thread then pulls
the descriptor and executes the operation on behalf of the calling
thread. Waiting for completion simply involves checking the sta-
tus of the request; no progress calls are required (loop at line 10).

Lock contention is completely avoided in this case since it is lock-
less (note that contention for a descriptor queue might still occur),
and the approach reduces interference between issuing operations
and waiting for their completion since they are no longer coupled
through lock acquisitions. This model, however, sacrifices CPU
resources for the sake of the communication threads that might
interfere with application threads when competing for on-node
resources. Furthermore, software offloading incurs overheads in the
absence of contention because of unnecessary offloading; in this
case, a thread can directly issue the operation instead of creating,
posting, and relying on the dedicated thread to dequeue and execute
a work descriptor. MPICH2 over PAMI (Parallel Active Message In-
terface) on Blue Gene/Q systems [21], the work by Vaidyanathan et
al. that offloads MPI communication to a dedicated thread [28], and
the work by Wataru et al. that offloads Infiniband communication
operations to user-level threads [10] are examples that follow this
model.

Lock Contention Management. This model does not alter
lock granularity. Instead, contention is managed in a way that
reduces overheads outside serialization. For instance, as shown by
Amer et al. [1, 3], in order to reduce thewaste from unnecessary lock
acquisitions in the progress loop (lline 14 in Figure 1a), the locking
protocol can prioritize lock acquisitions with higher productive
potential. Figure 1d shows an example of a locking API that exposes
a routine lock_acquire_low that gives lower priority to the calling
thread, thus prioritizing threads calling lock_acquire. To further
reduce contention when waiting for completion, Dang at al. showed
how the progress loop can be managed in a server-client model
where one of the application threads (server) calls network progress
while the others (clients) wait on a local flag [8]. The server wakes
up threads that have their pending operations completed.

In the lock-based examples, locks have been used as the unique
form of synchronization. Protecting LLN calls in this way is com-
mon and important for correctness and performance portability.
Protecting the request object pool (line 2 in Figures 1b and 1c) is
done only for illustration and can be implemented in a lockless man-
ner. With the exception of the offload model, all the above models
impose blocking lock acquisition on nonblocking MPI operations
(MPI_Isend in the example). Depending on the performance and
fairness of the lock implementation, the caller might wait for an
unbounded number of steps to acquire the lock before issuing an
operation, thus reducing the asynchrony benefits of MPI nonblock-
ing operations. The offload model effectively eliminates this issue as
long as the underlying queuing system guarantees a bounded num-
ber of steps to enqueue a work descriptor, which is a wait-freedom
requirement. Since wait-free queues have been demonstrated in
practice [20], this requirement can be satisfied, and the offload
model can retain the asynchronous property of nonblocking calls.
This model, however, imposes (1) offloading overheads (even in
the absence of contention) and (2) communication threads, which
sacrifice CPU resources and potentially cause interference with
application threads.

Combining-Based Thread Safety Models
Ideally, the thread safety model would retain the asynchrony

benefits of the offload model without requiring dedicated communi-
cation threads. In the following, we present two new thread safety

3

ICS’19, June 26-28, 2019, Phoenix, AZ, USA Amer et al.

1 MPI_Isend (ARGS,*req) {
2 lock_acquire(L);
3 request_create(ARGS,req);
4 LLN_isend(ARGS,req);
5 lock_release(L);
6 }
7 MPI_Wait (ARGS,*req) {
8 lock_acquire(L);
9 while (!complete(req)) {
10 LLN_progress_all();
11 if (!complete(req)) {
12 lock_release(L);
13 /*[pause or yield]*/;
14 lock_acquire(L);
15 }
16 }
17 free(req);
18 req = REQUEST_NULL;
19 lock_release(L);
20 }

(a) Coarse-grained global locking

1 MPI_Isend (ARGS,*req) {
2 lock_acquire(req_L);
3 request_create(ARGS,req);
4 lock_release(req_L);
5 lock_acquire(LLN_L)
6 LLN_isend(ARGS,req);
7 lock_release(LLN_L);
8 }
9 MPI_Wait (ARGS,*req) {
10 while (!complete(req)) {
11 /*[pause or yield]*/;
12 lock_acquire(LLN_L);
13 LLN_progress_all();
14 lock_release(LLN_L);
15 }
16 lock_acquire(req_L);
17 free(req);
18 lock_release(req_L);
19 req = REQUEST_NULL;
20 }

(b) Fine-grained locking

1 MPI_Isend (ARGS,*req) {
2 lock_acquire(req_L);
3 request_create(ARGS,req);
4 lock_release(req_L);
5 /*create work descriptor*/
6 descr_create(ARGS,req,&d);
7 LLN_post(d);
8 }
9 MPI_Wait (ARGS,*req) {
10 while (!complete(req)) {
11 /* progress done by
12 communication threads*/
13 /*[pause or yield]*/;
14 }
15 lock_acquire(req_L);
16 free(req);
17 lock_release(req_L);
18 req = REQUEST_NULL;
19 }
20

(c) LLN lockless offloading

1 MPI_Isend (ARGS,*req) {
2 lock_acquire(L);
3 request_create(ARGS,req);
4 LLN_isend(req);
5 lock_release(L);
6 }
7 MPI_Wait (ARGS,*req) {
8 lock_acquire(L);
9 while (!complete(req)) {
10 LLN_progress_all();
11 if (!complete(req)) {
12 lock_release(L);
13 /*[pause or yield]*/;
14 lock_acquire_low(L);
15 }
16 }
17 free(req);
18 req = REQUEST_NULL;
19 lock_release(L);
20 }

(d) Priority locking
Figure 1: Simplified description of various thread safety models. LLN_progress_all progresses all network resources (global progress); complete(req) returns TRUE if
req has completed; ARGS captures function arguments that are unnecessary to mention individually and would otherwise clutter the code snippets.

models for multithreaded MPI based on software combining. The
first model, CSync, is mostly a direct application of DSM-Synch [11],
which is a scalable implementation of the combining principle. This
model borrows from the offload model the concept of handing
over work to another thread (i.e., combiner) but without requiring
dedicated threads. This approach improves scalability by reducing
remote memory references but carries over blocking synchroniza-
tion as done in lock-based models. The second model, LockQ, ad-
dresses the shortcomings of CSync by relaxing synchronization on
the critical path of nonblocking MPI operations by exploiting MPI
knowledge. In the following, we describe the step-by-step process
of implementing these models while discussing their costs on the
critical path in the absence and presence of contention.

Software Combining in Practice
Combining is an old technique that was used in hardware [25]

and software [30] to mitigate memory and network contention by
combining requests from the same memory location. Software com-
bining has also been used to implement concurrent data structures
by exploiting the fact that sequentially combining multiple requests
by the same thread (or processor) reduces the overall memory and
network traffic. These benefits have long been questioned, however,
because of high synchronization overheads.

Recently, software combining has become more popular thanks
to more efficient implementations. The most notable works that
made them more practical are flat-combining by Kendler et al. [14]
and CC-Synch and DSM-Synch by Fatourou et al. [11]. These tech-
niques share the general idea that critical section work is protected
by a lock and represented by a request object. A thread first an-
nounces its request by pushing it to an announcement list and then
proceeds to compete for the lock. We refer to this thread as an
announcer. The thread that succeeds in acquiring the lock becomes
the combiner that will not only execute its own request but also ex-
ecute requests found in the announcement list. On lock acquisition
failure, the thread busy waits until either its request has completed
or the lock has been released. We refer to this step as synchronizing
between an announcer thread and a combiner one.

To our knowledge, CC-Synch and DSM-Synch are the most scal-
able software combining techniques and draw their efficiency from
the lock algorithms they are derived from: CC-Synch is based on

CLH [22], and DSM-Synch is based on MCS [23]. Given that these
lock algorithms build implicit queues of waiting threads, the cor-
responding software combining techniques reuse the queues to
function as announcement lists. In addition to supporting lock own-
ership passing, these queues allow explicit traversal by the lock
holder and execute the requests found in the queue nodes. CC-Synch
has been proven to be slightly superior to DSM-Synch in practice,
but both outperform all prior software combining techniques. We
choose hereafter to use DSM-Synch instead of CC-Sync because it
is based on MCS; this allows us to better isolate the performance
differences with respect to the following Per-VNI and LockQ models
that use MCS-related primitives.

To avoid confusion with MPI request objects, in the following
we refer to requests being posted on the announcement list as work
descriptors, and we use the terminology work queue, combining
queue, and announcement list interchangeably.

Critical Section Scope

Software combining can be applied to any critical section, but
it should be limited to offloading nonblocking operations because
blocking operations will penalize the combining thread for un-
bounded periods of time, resulting in load imbalance and, worse,
possibly leading to deadlocks in the context of MPI due to data
dependencies between threads. Consequently, this paper limits soft-
ware combining to only nonblocking LLN operations, which are
often subject to significant contention hotspots. To expose inter-
nal parallelism in the MPI library while reducing the complexity
of maintaining a large number of critical sections, we chose to
implement software combining at the level of the virtual network
interface (VNI). This thread safety granularity is a subcategory of
the previously described fine-grained locking model. A VNI is an
abstract object that encapsulates an independent network resource
and is thread unsafe; it requires external thread safety mechanisms
to ensure single-threaded access. For instance, it could be mapped to
an OFI endpoint. This level of locking granularity has been exploited
by Cray MPT [19] and Open MPI [16] to encapsulate network con-
texts, for instance. Any shared state outside a VNI, such as a request,
is not protected by VNI locks and requires separate protection.

4

Software Combining to Mitigate Multithreaded MPI Contention ICS’19, June 26-28, 2019, Phoenix, AZ, USA

Figure 3a illustrates how the VNI-level granularity operates. We
label the resulting thread safety model as Per-VNI, which is an in-
termediate model before applying software combining. The figure
also highlights the changes over the fine-grained locking model in
Figure 1b. We observe that the main difference between the two
models is that Per-VNI allows more fine-grained locking by pro-
tecting independent VNIs separately as opposed to protecting all
LLN operations with the same lock. The mapping between MPI-
level information to the target VNI is done with the hash() function,
developed with the goals of minimizing thread contention and max-
imizing network resource usage. MPI semantics, however, require
some form of global progress in case the LLN does not support all
of MPI in a hardware-native way. That is, if a single MPI operation
is not supported natively by the network fabric, the MPI library has
to emulate the operation with active messages.1 As a result, global
progress is necessary (line 22), but its overhead on the critical path
can be controlled by some MPI library-specific policy.2

Costs of Per-VNI over Global. The major extra costs are atomic
reference counting of request objects (to address races, such aswhen
two threads access the same request while one of them is outside
critical sections) and additional lock acquisitions on the critical
path (two locks in the example figure).

The CSync Thread Safety Model
Applications of software combining have been demonstrated

mostly to implement basic data structures, such as queues and
stacks. Our goal in this work is to execute complex communication
operations, such as network calls that traverse several layers of the
software stack. One particular challenge we encountered was the
programmability constraint of software combining; the user-facing
API is often a single synchronization function that merges three
operations in one API routine: acquiring the lock, combining, and
releasing the lock. This forces the user to implement every critical
section that accesses an object as a function (often called apply())
that operates on a descriptor. This can be unnecessary program-
ming complexity especially for noncritical operations, which can
be satisfactorily implemented with traditional mutual exclusion. In
addition, indiscriminately announcing every operation regardless
of productivity aspects pollutes the work queue with unproduc-
tive operations (e.g., LLN_progress can be unproductive). In the
following, we describe DSM-Synch and its API extension to support
traditional mutual exclusion and alleviate the above shortcomings.

3.3.1 DSM-Synch and API Extension. The new DSM-Synch API
is composed of dsm_synch (the original function); dsm_acquire,
which performs lock acquisition and combining; and dsm_release,
which releases the lock. For dsm_acquire to work while sharing the
same queue as dsm_synch, a thread enqueues a special descriptor to
announce an empty operation (we chose NULL as the special value,
but any other carefully chosen constant can be used). A combiner
thread then halts combining on seeing such a descriptor and passes
ownership of the lock. Because frequently halting combining hurts
scalability, we allow at most one empty descriptor in the queue,

1For instance, we know of no network fabric that supports natively the MAXLOC and
MINLOC operations (Section 5.9.4 of the MPI-3.1 Standard). Doing so requires that
MPI processes listen to potential active message requests to be serviced, which might
arrive on any VNI.
2E.g., the branch at line 21 could be taken infrequently.

specifically by blocking dsm_acquire callers with an MCS lock and
letting at most one thread proceed to compete for the combining
queue. Details follow.

We first reproduce the original DSM-Synch algorithm from Fa-
tourou et al. [11] in Figure 2a. We highlight the major algorithmic
differences with respect to the original MCS algorithm it was de-
rived from, as well as a bug fix at line 63. We notice that dsm_synch
performs lock acquisition, combining, and lock release in the same
API routine. This approach assumes that every access to the orig-
inal critical section must go though the dsm_synch operation. In
practice, however, we found that this is constraining on the pro-
grammer, involves a performance penalty of announcing a request
when contention does not take place, and potentially pollutes the
work queue with unproductive operations. As a result, we con-
cluded that supporting traditional mutual exclusion along with
software combining gives more flexibility to the programmer and
provides means to avoid the performance overheads.

To develop a more expressive API, we first decoupled the three
operations being performed in dsm_synch to extract reusable com-
ponents (Figure 2b). The only minor change needed for this step
is to keep track of the head of the queue when combining, which
is highlighted in the code snippet. The changes allow the new re-
lease routine to infer whether a lock release operation is necessary
(i.e., I am the combiner so I have to pass ownership of the lock).
Next, we show our extensions to DSM-Synch to allow traditional
mutual exclusion (Figure 2c). Let us first ignore the new MCS lock
at lines 3, 17, and 28. The new API routine dsm_acquire performs
a lock acquisition by enqueuing a NULL request (line 19), which
mostly follows the original MCS algorithm. The calling thread has
to wait until it acquires the lock and implies that it has to become
a combiner thread. Thus, it follows with a call to combine (line 21).
The routine dsm_release simply calls release (line 26). For this to
work correctly, the most important change lies in the combine rou-
tine. The combiner thread must avoid executing a NULL request
(lines 42–47) and break out of the loop when the next thread in-line
called dsm_acquire (i.e., its request is NULL; line 54). In other words,
combining is halted, and a lock ownership passing is enforced.

These changes allow correct behavior but exhibit a serious per-
formance flaw under contention. In the presence of a large number
of NULL requests, combining will be halted frequently, thus wast-
ing its benefit. We tackled this issue by allowing at most one NULL
request in the combining queue using a two-step lock acquisition
algorithm. On calling dsm_acquire, only the lock holder of D->lock
(line 17) proceeds to acquire the combining lock (line 19), effectively
filtering the surplus of NULL requests.

3.3.2 The CSync Model. Here we rely on the DSM-Synch API. In
Figure 3b we illustrate how it is applied over the Per-VNI model.
DSM-Synch assumes a global apply() function that operates on a
work descriptor (lines 1–6). Our implementation uses operation
codes to distinguish between the LLN operations to execute. For
instance, ISEND corresponds to LLN_isend. Then, we replace the
critical sections around nonblocking operations by creating a work
descriptor followed by calling dsm_synch. At this stage, the thread
either acquires the lock and combines operations or waits for an-
other combiner thread to execute the operation on its behalf. For
noncritical LLN operations (e.g., LLN_progress), mutual exclusion

5

ICS’19, June 26-28, 2019, Phoenix, AZ, USA Amer et al.

1 typedef struct qnode {
2 void *req;
3 unsigned status;
4 struct qnode *next;
5 } qnode_t;
6 /* thread private node */
7 typedef struct tnode {
8 qnode_t qnodes[2];
9 int toggle;
10 } tnode_t;
11 thread_local tnode_t tnode;
12 typedef struct dsm {
13 qnode_t *tail;
14 } dsm_t;
15 void dsm_synch(dsm_t *D, void *req){
16 qnode_t *tmp, *local, *pred;
17 /* prepare my local node */
18 tnode->toggle = 1 - tnode->toggle;
19 local = &tnode->qnodes[tnode->toggle];
20 local->status = WAIT;
21 local->next = NULL;
22 local->req = req;
23
24 /* swap with global lock (queue tail)
25 * this announces my request "req" */
26 pred = SWAP(D->tail, local);
27 /* lock owned by other thread (combiner)
28 * update next and wait on my status */
29 if (pred != NULL) {
30 pred->next = local;
31 while(local->status == WAIT) /*NOP*/;
32 /* return if request completed */
33 if(local->status == COMPLETE)
34 return;
35 }
36
37 /* am combiner and req is pending */
38 tmp = local;
39 int counter = 0;
40 while (1) {
41 apply(tmp->req);
42 tmp->status = COMPLETE;
43 if (tmp->next == NULL ||
44 tmp->next->next == NULL ||
45 counter > MAX_COMBINE)
46 break;
47 tmp = tmp->next;
48 counter++;
49 }
50
51 /* release the lock */
52 if (tmp->next == NULL) {
53 if(CAS(D->tail, tmp, NULL))
54 return;
55 /* wait pending enq to update next */
56 while (tmp->next == NULL) /*NOP*/;
57 }
58
59 /* reached maximum combining operations
60 * or false-positive empty queue.
61 * elect next thread as the combiner.*/
62 tmp->next->status = UNLOCKED;
63 tmp->next = NULL; /* omitted for correctness */
64 }

(a) Original DSM-Synch[11]

1 typedef struct tnode {
2 struct qnode qnodes[2];
3 int toggle;
4 qnode_t *head;
5 } tnode_t;
6 void dsm_synch(dsm_t *D, void *req) {
7 /* (1) acquire lock or enq req */
8 acq_enq(D, req);
9 /* (2) combine requests if any */
10 combine(D);
11 /* (3) release lock if needed. */
12 release(D);
13 }
14 void acq_enq(dsm_t *D, void *req) {
15 qnode_t *local, *pred;
16 tnode->toggle = 1 - tnode->toggle;
17 local = &tnode->qnodes[tnode->toggle];
18 local->status = WAIT;
19 local->next = NULL;
20 local->req = req;
21 pred = SWAP(D->tail, local);
22 if (pred != NULL) {
23 pred->next = local;
24 while(local->status == WAIT) /*NOP*/;
25 if(local->status == COMPLETE)
26 return;
27 }
28 }
29 void combine(dsm_t *D) {
30 qnode_t *tmp, *local;
31 local = &tnode->qnodes[tnode->toggle];
32 if (local->status == COMPLETE) {
33 /* combine and release unnecessary */
34 tnode->head = NULL;
35 return;
36 }
37 tmp = local;
38 int counter = 0;
39 while (1) {
40 apply(tmp->req);
41 tmp->status = COMPLETE;
42 if (tmp->next == NULL ||
43 tmp->next->next == NULL ||
44 counter > MAX_COMBINE)
45 break;
46 tmp = tmp->next;
47 counter++;
48 }
49 tnode->head = tmp;
50 }
51 void release(dsm_t *D) {
52 qnode_t *tmp = tnode->head;
53 /* tmp = head or NULL if req completed
54 * NULL, no need to perform release. */
55 if (tmp == NULL)
56 return;
57 if (tmp->next == NULL) {
58 if(CAS(D->tail, tmp, NULL))
59 return;
60 while (tmp->next == NULL) /*NOP*/;
61 }
62 tmp->next->status = UNLOCKED;
63 tmp->next = NULL; /* omitted for correctness */
64 }

(b) Logical Decomposition

1 typedef struct dsm {
2 qnode_t *tail;
3 mcs_t lock;
4 } dsm_t;
5
6 void dsm_synch(dsm_t *D, void *req) {
7 /* (1) acquire lock or enq req */
8 acq_enq(D, req);
9 /* (2) combine requests if any */
10 combine(D);
11 /* (3) release lock if needed. */
12 release(D);
13 }
14
15 void dsm_acquire(dsm_t *D) {
16 /* (1) acquire the MCS lock */
17 lock_acquire(D->lock);
18 /* (2) acquire the combining lock */
19 acq_enq(D, NULL);
20 /* (3) combine requests if any */
21 combine(D);
22 }
23
24 void dsm_release(dsm_t *D) {
25 /* (1) release the combining lock */
26 release(D);
27 /* (2) release the MCS lock */
28 lock_release(D->lock);
29 }
30
31 void combine(dsm_t *D) {
32 qnode_t *tmp, *local;
33 local = &tnode->qnodes[tnode->toggle];
34 if (local->status == COMPLETE) {
35 /* combine and release unnecessary */
36 tnode->head = NULL;
37 return;
38 }
39 tmp = local;
40 int counter = 0;
41 while (1) {
42 if (tmp->req == NULL) {
43 /* invariants:
44 (1) I am the combiner thread
45 (2) I called "DSM-Acquire"
46 (3) first loop iteration */
47 assert(counter == 0);
48 } else {
49 apply(tmp->req);
50 tmp->status = COMPLETE;
51 }
52 if (tmp->next == NULL ||
53 tmp->next->next == NULL ||
54 tmp->next->req == NULL ||
55 counter > MAX_COMBINE)
56 break;
57 tmp = tmp->next;
58 counter++;
59 }
60 tnode->head = tmp;
61 }
62
63
64

(c) API Extension
Figure 2:DSM-Synch description (a), logical component breakdown and restructuring (b), and API extensions (c).WAIT, UNLOCKED, and COMPLETE denote compile-
time constants for the state of a node, and MAX_COMBINE is the threshold for the number of requests a combiner thread is allowed to execute. SWAP and CAS
represent atomic swap and compare-and-swap operations, respectively. The code highlighted in (a) indicates the major changes with respect to the originalMCS
algorithm (note that the original algorithm had a bug at line 63, which we fixed by simply avoiding that unnecessary and erroneous store operation); those in (b)
indicate the algorithmic changes compared with the original DSM-Synch to break it into separate routines; and the highlights in (c) indicate the changes over (b)
to support traditional mutual exclusion in addition to software combining.

is used by protecting the call with dsm_acquire and dsm_release;
dsm_acquire not only ensures lock acquisition but also does com-
bining. To avoid a thread falling victim to heavy combining for the
rest of the threads, a threshold on combining is used and set to
1K by default (MAX_COMBINE constant in Figure 2) to circulate the
combining responsibility.

Costs of CSync over Per-VNI with MCS. The synchronization
part of dsm_synch is identical to MCS. In the absence of contention,

CSync’s heaviest extra cost is setting the work descriptor, which in-
volves one to two cache lines of load/store operations. If combining
is performed, unpacking the arguments adds a similar overhead.
Synchronization is reduced for noncombining threads since they
only read the status of a descriptor. CSync incurs the same extra
costs as Per-VNI with respect to atomic operations in addition to
having one extra lock acquisition in dsm_acquire.

6

Software Combining to Mitigate Multithreaded MPI Contention ICS’19, June 26-28, 2019, Phoenix, AZ, USA

1 MPI_Isend (ARGS,*req) {
2 lock_acquire(req_L);
3 request_create(ARGS,req);
4 lock_release(req_L);
5 idx = hash(req);
6 lock_acquire((L[idx])
7 LLN_isend(VNI[idx],req);
8 lock_release(L[idx]);
9 }
10
11
12
13
14
15 MPI_Wait (ARGS,&req) {
16 idx = hash(req);
17 while (!complete(req)) {
18 lock_acquire(L[idx]);
19 LLN_progress(VNI[idx]);
20 lock_release(L[idx]);
21 if(cond)
22 LLN_progress_global();
23 }
24 lock_acquire(req_L);
25 free(req);
26 lock_release(req_L);
27 req = REQUEST_NULL;
28 }
29

(a) Per-VNImodel

1 void apply(*d) {
2 switch(d->op) {
3 case ISEND: LLN_isend(d->ARGS,d->req);
4 ...
5 }
6 }
7 MPI_Isend (ARGS,*req) {
8 lock_acquire(req_L);
9 request_create(ARGS,req);
10 lock_release(req_L);
11 idx = hash(req);
12 descr_create(ARGS,req,&d);
13 dsm_synch((L[idx], d);
14 }
15 MPI_Wait (ARGS,&req) {
16 idx = hash(req);
17 while (!complete(req)) {
18 dsm_acquire(L[idx]);
19 LLN_progress(VNI[idx]);
20 dsm_release(L[idx]);
21 if(cond)
22 LLN_progress_global();
23 }
24 lock_acquire(req_L);
25 free(req);
26 lock_release(req_L);
27 req = REQUEST_NULL;
28 }
29

(b) CSync model

1 MPI_Isend (ARGS,*req) {
2 lock_acquire(req_L);
3 request_create(ARGS,req);
4 lock_release(req_L);
5 idx = hash(req);
6 if (lock_tryacq(L[idx])) {
7 combine(Q[idx]);
8 LLN_isend(ARGS,req);
9 lock_release(L[idx]);
10 } else {
11 decsr_create(&d);
12 post(Q[idx],d);
13 }
14 }
15 MPI_Wait (ARGS,*req) {
16 idx = hash(req);
17 while (!complete(req)) {
18 lock_acquire(L[idx]);
19 combine(Q[idx]);
20 LLN_progress(VNI[idx]);
21 lock_release(L[idx]);
22 if(cond)
23 LLN_progress_global();
24 }
25 lock_acquire(req_L);
26 free(req);
27 lock_release(req_L);
28 req = REQUEST_NULL;
29 }

(c) LockQ model
Figure 3: Per-VNI, CSync, and LockQ thread safety models.

The LockQ Thread Safety Model
CSync improves on MCS in most cases, as will be shown in the

Evaluation section, but it falls short in many ways: (1) the compul-
sory announcement incurs overheads of creating the work descrip-
tor particularity in the absence of contention; (2) the dsm_synch

routine is blocking, which wastes the asynchrony of MPI nonblock-
ing operations; and (3) the effectiveness of combining is limited by
shallow queue depth (because of threads waiting instead of pushing
more work and also because of interruptions from lock acquisitions
with empty descriptors). We observe that the coupled lock-list data
structure of CSync is at the heart of the issue. Because threads use
the lock data structure to announce operations, they cannot leave
unless their operations have completed or the lock has been passed
to them. If a thread T leaves after announcing its operation, the
system might hang for a long time or even indefinitely because T
failed at its ownership passing and combining responsibilities.

LockQ addresses these shortcomings by decoupling lock and an-
nouncement list data structures and by leveraging MPI semantics
to relax synchronization, preserve asynchrony, and feed combin-
ing threads with more work than CSync would. LockQ, similarly
to CSync, is implemented with the Per-VNI model as its baseline;
Figure 3c highlights the changes over the Per-VNI model. Each VNI
v is associated with not only a lock L[v] but also a work queue
Q[v]. By decoupling lock and data structures, a thread can enqueue
a descriptor and leave without causing trouble to threads compet-
ing for the lock. Any successful lock acquisition on a VNI must be
followed by combining the operations in the corresponding queue.

In this decoupled model, however, posting and combining an
operation are racy operations. Suppose T1 is about to release the
lock of work queue Q[v] (i.e., it is done being the combiner of that
queue) and T2 fails its lock acquisition and posts its operation on
Q[v]. T1 will not execute the operation since it already finished
combining while T2 is leaving. If no other thread acquires L[v], the
operation will never get executed.

This is where MPI semantics come into play. In MPI, a nonblock-
ing operation must be followed by a synchronization (or progress)
MPI call to ensure progress and check (or wait) for the completion
of the target operation. For instance, the MPI_Wait and MPI_Test

calls are used to check or wait for the completion of various re-
quests, such as those associated with nonblocking point-to-point
operations. MPI_Win_flush is an example of a synchronization call
for remote memory access (RMA) operations. LockQ relies on these
calls as the last resort to combine pending operations on a VNI.
Since these calls must be issued by the user eventually, correctness
of execution is ensured, and deadlocks are avoided. From a differ-
ent perspective, after a thread announces the MPI_Isend operation,
busy waiting for its execution is redundant since it can wait for its
completion when calling MPI_Wait; thus, MPI semantics allowed
relaxing the synchronization.

Let us look at how LockQ is implemented in practice. When
executing a nonblocking operation, instead of waiting for the lock,
a thread performs a nonblocking lock acquisition attempt (line 6).
On success, the thread becomes the combiner for the target VNI
and combines any pending operation in its work queue (line 7)
before executing its own operation (line 8). Doing so is critical for
the correctness of ordered communication (e.g., point-to-point or
one-sided accumulate operations). On lock acquisition failure, the
thread creates a work descriptor for the operations and announces
(posts or enqueues at line 12) it on the target work queue. The
posted operationmay ormay not be combined by a thread executing
another nonblocking operation. The user, however, has to follow the
MPI_Isend operation with a synchronization call, such as MPI_Wait.
In this case, the user waits on the lock acquisition (line 18) and
combines the operation (line 19).

The combine() routine is similar to the one used by DSM-Synch.
It traverses the work queue, calls the same apply() routine as DSM-
Synch, and has the same MAX_COMBINE threshold on combining. If
the threshold is reached, the thread enqueues its operation and

7

ICS’19, June 26-28, 2019, Phoenix, AZ, USA Amer et al.

releases the lock without executing its operation. This threshold
part of the algorithm is omitted from Figure 3c for brevity (line
8 should not be executed if the threshold is reached). The final
technical detail is with respect to ordering. Some MPI operations
require total ordering, such as point-to-point and RMA accumulate
operations. This implies that if two user threads synchronize to
establish some ordered communication, the ordermust be preserved
by the MPI library. To respect this constraint, the work queue must
be totally ordered.

3.4.1 Totally Ordered ConcurrentQueue.Communication that does
not require ordering allows the LockQmodel to leverage relaxed and
potentially faster queues than does a totally ordered queue that is
essential only for ordered communication. A totally ordered queue
is more practical, however, because the MPI library programmer
does not need to worry about ordering issues, regardless of the
communication characteristic of the application. Here we describe
a practical totally ordered queue that was used for LockQ. We note
that in LockQ, at most one thread dequeues from a work queue. This
design allows the dequeue routine to relax memory consistency
and focus only on the consistency between enqueue operations and
on possible races between an enqueue and a dequeue operation.

Figure 4 shows the implementation of SWP, a multiproducer
single-consumer queue. This queue was inspired by the MCS
lock [23], which maintains an implicit queue of waiting threads.
The lock owner behaves as the only thread allowed to dequeue
(wake up) the waiting thread next in line; SWP simply makes the
queue explicit and removes unnecessary waiting loops. In SWP,
head and tail point to a dummy node to decouple enqueue and
dequeue operations. To enqueue an element, a thread prepares its
node (lines 9–11), enqueues the node by first swapping it against
the tail (line 12), and then updates the next pointer of the previous
tail (line 13). During a dequeue operation, looking at the next field
of the head of the queue is sufficient to detect an empty queue (line
18). If the queue is not empty, next points to the node that holds
the data and will become the new head (becomes a dummy node)
of the queue (line 22). The old head node gets freed (line 24).

Linearizability. SWP is not linearizable because the enqueue

method does not admit a linearization point [15]; its effect is not
visible to all methods at one point. The effects are globally visible
at two points on lines 12 and 13. This makes the queue fragile since
a thread that gets interrupted after executing line 12 and before
executing line 13 renders the queue unusable until the thread is
back. This implies that the queue is not robust against failures.

Wait-Freedom. Active enqueue/dequeue methods are wait-free
since they finish executing in a bounded number of steps (even if
an infinite delay at some thread is introduced between lines 12 and
13). In this case, however, the dequeue will always return empty
because of the linearizability issue and renders the queue unusable.

This is not a setback for LockQ, however, since it admits any
concurrent queue implementation. We have attempted to use the
fast fetch-and-add wait-free queue by Yang et al. [29] (using the
reference implementation by the authors), but its integration in
LockQ and in ourMPI library was not successful and requires further
investigation (even with just two multithreaded MPI processes, the
execution resulted in crashes and deadlocks). While SWP might
seem inferior because of its lack of linearizability, we deployed

1 init(Q) {
2 node = alloc_node(); // Dummy node
3 node->data = NULL; // to avoid contention
4 node->next = NULL; // for the head and tail
5 Q->head = node; // from an enqueue and
6 Q->tail = node; // a dequeue
7 }
8 enqueue(Q, void *data) {
9 node = alloc_node();
10 node->data = data; // new tail node
11 node->next = NULL; // nobody behind me yet
12 pred = SWAP(&Q->tail, node); // tail update visible
13 pred->next = node; // link pred to my node
14 }
15 dequeue(Q, void **data) {
16 *data = NULL;
17 head = Q->head;
18 if (head->next == NULL) { // queue empty
19 return; // return on empty queue
20 } else { // queue not empty, no race
21 next = head->next; // between enqs and a deq
22 Q->head = next; // head update visible
23 *data = next->data;
24 free_node(head);
25 return;
26 }
27 }

Figure 4: SWP: a multiproducer single-consumer concurrent queue. SWAP de-
notes an atomic swap operation. We highlight the lines that break lineariz-
ability.

this queue along with LockQ on production systems at large scale
without any practical issues.

3.4.2 Implementation of LockQ. The implementation in this paper
relies on the SWP queue, which is efficient in practice because it
ensures fast wait-free enqueue operations and total ordering. The
other motivation for this queue is for a fair comparison with CSync
and Per-VNI with MCS and to isolate the performance differences
between them, since they are all based on MCS and rely on atomic
swap operations.

LockQ preserves the theoretical property of asynchrony in MPI
nonblocking calls. In practice, it allows better communication over-
lapping since the thread can return to the application to execute
computational work. We also allow a thread to announce more
than one request at a time, in order to exploit request pipelining
and thus improve the latency hiding of the system. To avoid the
overhead of announcing requests under no contention, a thread
announces a request only on lock acquisition failure.

Costs of LockQ overCSync. In the absence of contention, LockQ
is less costly and incurs similar costs as Per-VNI. Under contention,
LockQ is slightly more costly than CSync: (1) it requires at least two
atomic operations (one of lock_tryacq and one for enqueueing
the work descriptor); and (2) since the same thread can pipeline
multiple operations multiple times, descriptors require dynamic
memory management instead of reusing the same queue node.

Nonblocking Progress Management
Thus far, we considered communication initiation-type of non-

blocking MPI calls, such as MPI_Isend. There exists another type
of nonblocking calls aimed for communication progress, such as
MPI_Test, that allows testing for the completion of an opera-
tion. From an implementation perspective, MPI_Test could map to
MPI_Wait (Figure 3c) but executing only a single iteration of the
loop at line 17. This renders the call blocking on lock acquisition
and wastes asynchrony. Moreover, by the time the waiting thread
acquires the lock, the operation it is waiting for might have been
completed by another thread, thus rendering the lock acquisition

8

Software Combining to Mitigate Multithreaded MPI Contention ICS’19, June 26-28, 2019, Phoenix, AZ, USA

unnecessary. It also exacerbates contention because threads issuing
operations on the same VNI as threads waiting on it compete for the
same lock. An alternative approach would be to simply check for
the request completion without progressing the LLN. This approach,
however, violates the MPI progress requirement in the absence of
asynchronous progress, as pointed out in Section 3.2.

We tackled this issue by adopting a nonblocking progress man-
agement not only for nonblocking MPI progress calls but also for
managing internally progress on blocking calls, such as MPI_Wait.
We use the progress loop in MPI_Wait to drive the discussion. A
thread does a nonblocking lock acquisition attempt (instead of
a blocking one at line 17 of any code snippet in Figure 3) and
busy waits for the request to be completed on lock acquisition
failure (MPI_Test would return to the user, but the same progress
tight loop could occur in the user code as well). The winner of
the lock progresses the VNI and might complete requests for the
other threads, for which competing for lock acquisition at this level
becomes unnecessary. Busy waiting on a lock acquisition attempt
often translates into high cache traffic from threads competing for
the same cache line, however, which outweighs the benefit of the
nonblocking progress in practice. We thus reduce the pressure on
the lock acquisition attempt using an exponential backoff, a known
optimization in the context of locking. Here we apply it for MPI
progress calls. For nonblocking progress calls, the current backoff
value is memorized across successive calls in order to detect con-
tention and use the backoff mechanism to reduce the frequency
of lock acquisition attempts. This particular case occurs in the
Graph500 benchmark evaluated in Section 4.4.

Progress and Asynchrony in LockQ

In this section, we informally reason about the progress proper-
ties of LockQ. First, we assume that the queue implementation is
wait-free (see [29]) and that the LLN calls are nonblocking (needed
for nonblocking MPI calls to be standard compliant). We distin-
guish three cases with respect to the type of nonblocking call being
performed and the success of the lock acquisition. In the case of
a progress call (e.g., MPI_Test), a lock acquisition failure returns
immediately, thus preserving nonblocking behavior. In the case
of a lock acquisition failure on a communication operation, the
thread posts its work descriptor and returns immediately. Since
the enqueue method is wait-free, this step is guaranteed to be non-
blocking. In the case of lock acquisition success, the thread becomes
a combiner and combines operations in the work queue. Execut-
ing individual work descriptors is nonblocking since the dequeue
method is wait-free and the LLN calls are nonblocking. Since the
number of operations executed by the combiner is bounded by
MAX_COMBINE, it follows that the combiner returns in a bounded
number of steps. This implies that LockQ can guarantee asynchrony
for nonblocking MPI calls with practical assumptions (wait-free
queue and nonblocking LLN routines).

Implementation
The new thread safety models have been integrated in the

production-level MPICH implementation (version 3.3a2) based on
the highly optimized CH4 device software layer [26]. Given that
work descriptors and queue nodes are dynamically allocated on the

Table 1: Platform specifications.

Microarchitecture Skylake Broadwell
Processor Xeon Platinum 8180 Xeon 2695v4
Clock frequency 2.5 GHz 2.1 GHz
Sockets / NUMA nodes 2 / 2 2 / 2
Cores per NUMA node 28 18
HW threads per core 2 1
L2/L3 Cache size 1 MB/38.5 MB 256 KB/45 MB
Interconnect Intel Omni-Path Intel Omni-Path
Compilers Intel 17.0.4 Intel 17.0.4
Linux kernel 3.10.0-693 3.10.0-693
Libpsm2/Libfabric 2.1/1.5.0 2.1/1.5.0

critical path, we link all binaries against Tcmalloc [12] for scalable
memory management.

Evaluation
We describe in this section the performance evaluation of various

thread safety models in terms of handling communication-intensive
benchmarks as well as graph traversal and particle transport proxy
applications.

Evaluation Platforms
Our evaluation was conducted on two commodity multicore

clusters, as detailed in Table 1. The first platform is based on the
Skylake microarchitecture featuring two 28-way core processors
totaling 56 cores (112 hardware threads) per node. Intel Turbo
Boost has been disabled to avoid dynamic frequency scaling from
interfering with the experiments. The second platform is based
on the Broadwell microarchitecture featuring two 18-way core
processors totaling 36 cores per node. Both clusters interconnect
nodes with the Intel Omni-Path fabric. MPICH on both clusters
was built with the CH4 device over the libfabric network module
and the provider based on the Intel Performance Scaled Messaging
2 (PSM2) library.

Our prototype implementation and evaluation method assumes
a single network resource (i.e., one VNI), which is mapped to a
libfabric endpoint. While using multiple VNIs would have been a
valuable setting, the intricacies of how threads and communication
patterns are mapped to VNIs are complex enough to warrant a
separate study.

Experimental Method
We evaluate the implementations of six thread safety models, as

briefly summarized below.
Global. Implements the model in Figure 1a.
Per-VNI. Implements the model in Section 3.2.
Offload. Implements the offload model in Figure 1c. It uses an

identical queuing system as LockQ and spawns a dedicated commu-
nication thread running on CPU 0.

HMCS<N>USC. Implements one of the best lock management
protocols for multithreaded MPI found in the literature [8] using
HMCS [6, 7] as the high-throughput lock. N indicates the number
of levels in this hierarchical lock, N=2 has one lock per NUMA
node and one root lock for the entire machine, and N=3 adds a
core-level lock for hardware threads sharing the same core. (N=3
will be evaluated only on the Skylake system since the Broadwell
cluster supports only one hardware thread per core). USC stands for
user space condition variable and captures the fact that this method
wakes up threads with completed work directly (O (1)) instead of
circulating the lock in O (N), as demonstrated in [8]

CSync. Implements the model in Section 3.3.
9

ICS’19, June 26-28, 2019, Phoenix, AZ, USA Amer et al.

LockQ. Implements the model in Section 3.4.
For a fair comparison, all these methods have been integrated in

the sameMPICH library, share the same critical paths except for the
subtle differences in the way they manage thread safety, have been
built with the same compiler toolchain, and are linked against the
same libraries at runtime. Global, Per-VNI, and LockQ use MCS as the
underlying locking algorithm (labeled LockQ-MCS). To showcase
the practicality of LockQ over CSync, we also include results with
Pthread mutex (labeled LockQ-MTX) as the underlying lock for this
model. The MPI request object pool is protected by the global lock
in the Global and HMCS<N>USCmodels and by a separate lock in the
other models. In both cases, we maintain a per-thread local request
cache to reduce contention for the lock, as done by Balaji et al. [5].
None of the methods use CPU 0 for the application threads. Thus,
it is either used only by the communication thread in the offload
model or unused.

Unless specified otherwise, the data points in the figure plots
that follow are sample means of 10 runs augmented with lower and
upper Gaussian confidence limits at 95% (error bars) based on the
t-distribution, which were computed with the smean.cl.normal

statistical function of the R Hmisc v4.1-1 package.

Communication-Intensive Benchmarks
Here, we consider a simple two-node setting with one MPI pro-

cess per node, various combinations of communication models
(nonblocking two-sided, blocking two-sided, and one-sided com-
munication) and degrees of concurrency. The experiments were
conducted on the Skylake cluster to emphasize thread contention
rather than node scaling.

Two-Sided Nonblocking. This model allows assessment of
point-to-point message rate capabilities. One of the processes is
the source of messages (calling MPI_Isend); the other is the sink
(calling MPI_Irecv). We consider two variations depending on the
degree of concurrency on each process, in other words, which
communication operation is being concurrently executed.

One-Sided. This model focuses on RMA message rate capabili-
ties using the MPI_Put operation. We use RMA passive communica-
tion by opening an epoch with MPI_Win_lock, issuing concurrently
a large window of MPI_Put operations with multiple threads, syn-
chronizing with the master thread, then using MPI_Win_flush to
complete all the pending operations, and closing the epoch with
MPI_Win_unlock.

Two-Sided Blocking. This model is a ping-pong test that tar-
gets point-to-point latency measurement. A single-threaded server
receives messages from a multithreaded client and sends back ac-
knowledgments. This ping-pong benchmark is implemented by
using MPI_Send and MPI_Recv calls.

Figure 5 shows the message rate and latency with respect to the
message size using 55 threads per MPI processes (one thread per
core). In the message rate case, we observe that Offload dominates
across the board, followed by LockQ, regardless of message sizes;
but the gap between the methods is more pronounced for messages
below 16 KB. We also notice that the code path that does not require
waiting for a completion event (MPI_Isend with messages below
64 B is injected and completed immediately) shows higher absolute
performance across methods and that LockQ competes with Offload.
On the latency side, most methods perform well except Global. Here,

the bottleneck lies in the progress management; except forGlobal, all
the methods have ways to reduce progress management overheads
and thus exhibit good latency. For example, Per-VNI, CSync, and
LockQ use a nonblocking progress with exponential backoff, and
the HMCS-based methods use an efficient O (1) mechanism; Offload
has the lowest overhead in this respect since application threads
only busy wait on completion without any contention. We also
observe that CSync underperforms at this scale especially with the
latency benchmark.

More insight is brought to light when varying the degree of
concurrency (Figure 6).

Sequential. This case has no contention. Global shows the best
performance since it has the lowest overhead (only one atomic
swap operation to acquire an MCS lock). Next are the HMCS-based
models, followed by the Per-VNI and LockQ that incur around 10%
or less overhead due to mostly performing more atomic operations.
Offload and CSync are the worst here because of the overhead of
unnecessary descriptor announcement. Offload is worse than CSync
since the application thread passes the descriptor to the dedicated
thread instead of executing it by itself.

Concurrency within a socket. The number of threads here
is within 28 and shows that the most scalable methods maintain
mostly flat performance, indicating little performance degrada-
tion (Offload and LockQ). CSync has the least clear trend: (1) it
does not perform well when the degree of concurrency is low be-
cause the combining queue is shallow and reduces the effectiveness
of combining; and (2) for MPI_Isend and MPI_Put, performance
grows with the number of threads, thanks to better combining
and no combining interruptions (no threads in the progress loop
calling dsm_acquire). With MPI_Irecv and the latency benchmark,
frequent combining interruptions happen and degrade its perfor-
mance.

Concurrency across sockets. This corresponds to thread
counts between 28 and 56. Offload is the only one that remains
scalable (thanks to reduced remote memory references); the others
degrade. The LockQ methods remain the next best performing.

Concurrency within cores. This corresponds to thread counts
above 56, in which case two hardware threads can run on the
same core.Offload remains scalable, whereasHMCS<3>USC improves
scalability by exploiting core-level locality. At 110 thread count,
the LockQ methods are still close to HMCS<3>USC despite being
hardware agnostic.

We also observe overall that bothMCS- and Pthread mutex-based
LockQmethods perform similarly despite using completely different
locking algorithms. This performance indicates the practicality of
LockQ, which can be easily integrated to other systems, unlike CSync,
which is reliant on the coupled lock-list data structure.

Breadth-First Search

Parallel breadth-first search (BFS) implementations are charac-
terized by irregular, dynamic, and sparse data exchanges (DSDEs).
Here, a process communicates with a small neighborhood of pro-
cesses that dynamically reshapes over time. NBX [18] has been
demonstrated to be an efficient implementation of DSDEs and has
been exploited by Amer et al. to implement a hybrid MPI+OpenMP
BFS algorithm using the Graph500 benchmark as a baseline [2].

10

Software Combining to Mitigate Multithreaded MPI Contention ICS’19, June 26-28, 2019, Phoenix, AZ, USA

● ● ● ● ● ● ● ● ● ● ● ● ●

●
●

●

●

●

●

●

●

● ● ● ●
● ● ●

● ● ● ● ● ●
●

● ●

●

●

●

●

●

● ● ● ● ● ● ● ● ● ●
●

●

●
●

●
●

●

●

●

●

●

Irecv Isend Put

16 512 16384 524288 16 512 16384 524288 16 512 16384 524288
4096

8192

16384

32768

65536

131072

262144

524288

1048576

2097152

Message Size (B)

M
es

sa
ge

 R
at

e
(m

sg
s/

s)

●Global Per−VNI Offload HMCS<2>USC HMCS<3>USC CSync LockQ−MCS LockQ−MTX

(a) Message rate

●
● ● ● ● ● ● ● ● ● ●

●
●

●

●
●

●

●

●

●

Send / Recv

16 512 16384 524288

4

8

16

32

64

Message Size (B)

La
te

nc
y

(u
s)

(b) Latency

Figure 5:Message rate and latency results with respect to themessage size. Themessage rate results are groupedwith respect to theMPI operation being performed
concurrently by 55 threads (the title of each group is the operation that is performed with multiple threads).

●

●

●
●

●
●

●
● ● ●

●

●

●

● ● ●

●

● ● ● ● ● ●
●

● ●

●

●

●
●

●
●

●

●
● ●

● ●
●

● ● ●

●

●

●
●

●
●

Irecv Isend Put

2 8 32 128 2 8 32 128 2 8 32 128

524288

1048576

2097152

Number of Threads per MPI Process

M
es

sa
ge

 R
at

e
(m

sg
s/

s)

●Global Per−VNI Offload HMCS<2>USC HMCS<3>USC CSync LockQ−MCS LockQ−MTX

(a) Message rate

●

●
● ● ● ● ● ● ● ●

●

●

●
● ● ●

Send / Recv

2 8 32 128

2

4

8

16

32

64

Threads per Process

La
te

nc
y

(u
s)

(b) Latency

Figure 6: Message rate (with 64 B message) and latency results with respect to thread concurrency. Threads are bound to hardware threads in a way to prioritize
filling cores close to each other. Only one hardware thread per core is used except when running with 110 threads. The results are grouped with respect to the
MPI operation being performed concurrently by multiple threads (the title of each group is the operation that is performed with multiple threads).

This implementation handles computation and communication con-
currently by multiple threads. The communication is implemented
with nonblocking point-to-point calls, and the wait for their com-
pletion is performed with nonblocking progress calls (MPI_Test).
These progress calls are issued when outgoing buffers are needed
for reuse or when there is no local computation to be performed. In
the Per-VNI, CSync, LockQ models, MPI_Test is implemented follow-
ing the backoff-based nonblocking progress method described in
Section 3.5. That is, if the backoff threshold has not been reached or
the lock acquisition fails, the call behaves as if the communication
has not yet completed. Since MPI requires that repeated calls to
MPI_Test eventually succeed for completed operations, our thread
safety models can satisfy this semantic by bounding the tolerated
number of lock acquisition failures.

This section focuses on heavy concurrency; the goal of the new
methods in this case is to perform as closely as possible to Offload
without scarifying resources. Strong-scaling results with a graph
scale of 32 (i.e., 232 vertices) are shown in Figure 7. The performance
is measured as the harmonic mean of the number of traversed edges
per second. Offload performs the best, followed by the LockQ in-
stantiations. CSync does improve on Per-VNI but remains inferior to
LockQ, which performs up to 8% better and indicates the benefits of

additional asynchrony and reduced overheads. LockQ significantly
underperforms compared with Offload (up to 30%). Our analysis
showed that the major bottleneck in these runs is waiting for com-
pletion, which significantly favors the Offload model (threads only
wait on a local flag, which is optimal). Threads in the other methods
are required to not only wait on a flag but also perform expensive
lock acquisitions and network progress. For confirmation, by forc-
ing threads in the Offload model to make progress (Offload-P in
Figure 7) performance is brought down to the same level as LockQ.
Synchronization counters [8] have the potential to reduce these
overheads by electing one of the threads as a server with the others
simply wait on a local flag. Unfortunately, this method is practi-
cal only for blocking calls and is unfit for nonblocking progress
calls such as MPI_Test. Investigation is need to develop thread syn-
chronization methods more suitable for nonblocking MPI progress
calls.

SNAP: Particle Transport
SNAP3 (SN Application Proxy) is a proxy application that em-

ulates the MPI-based discrete ordinates neutral particle transport

3https://github.com/losalamos/snap

11

https://github.com/losalamos/snap

ICS’19, June 26-28, 2019, Phoenix, AZ, USA Amer et al.

0e+00

1e+09

2e+09

3e+09

4e+09

2240 4480

Total Number of Threads

P
er

fo
rm

an
ce

 (
T

E
P

/s
)

Global Per−VNI Offload HMCS<2>USC
CSync LockQ−MCS LockQ−MTX Offload−P

Figure 7: Graph500 strong-scaling results on the Broadwell cluster with 35
threads per MPI process with respect to the total number of threads.

application PARTISN. Although PARTISN solves the linear Boltz-
mann transport equation on multidimensional grids, SNAP does
no actual physics but instead mimics the computational intensity,
memory footprint, and communication patterns of PARTISN. The
core of SNAP is characterized by an outer iterative loop that solves
the flux over the energy domain using, typically, tens to hundreds
of energy groups that are exploited for OpenMP thread-level paral-
lelism. Parallelism is also exploited at the other spatial and angular
dimensions. MPI-level data decomposition is performed along the
spatial domain and traversed through sweeps along the discrete
direction of the angular domain following the parallel Koch-Baker-
Alcouffe wavefront method [4]. The traversal incurs data exchanges
betweenMPI ranks using mostly two-sided point-to-point MPI com-
munication. We also built SNAP with OpenMP to perform both
communication and computation concurrently by multiple threads.

The baseline input problems used for the following experi-
ments originate from one of regression tests that come with SNAP:
mms_src. The following experiments study the various thread safety
models under low thread contention while striking a balance
between communication and computation. Under these circum-
stances, computation and coarse-grained communication (large
data transfers) render fine-grained thread synchronization methods
prone to overheads, and the simpler global locking models (Global
and HMCS<2>USC) act as an upper bound on performance. Results
are presented as time to solution of the "Transport Sweep" stage,
which is the most time-consuming part of the application.

Because of the increasingly deep memory hierarchies in cluster
nodes and difficulty in implementing NUMA-awareness in applica-
tions and dependent software layers, users often rely on spawning
multiple processes per node (PPN) to reduce the diameter of the
cache coherency traffic, which often improves overall parallel effi-
ciency. Figure 8.a shows the result of tuning SNAP on 16 Broadwell
nodes with a medium problem size {nx ,ny,nz} = {128, 72, 64}. We
observe that most methods achieve peak performance at PPN=6,
thenmostly stagnate, exceptOffload, which suffers significant degra-
dation.

The performance improvement is a combination of better cache
performance, from reducing remote memory references and cache
coherency traffic that comes from accessing shared data among
threads, and also by driving the network using multiple processes.
The optimal PPN value represents a saturation point. PPN also
represents the number of cores Offload sacrifices. Sacrificing up to
four cores is tolerable in this case since the benefits outweigh the

Table 2: Input parameters for the SNAP runs. The parameters npey and npez
depend on the number of MPI processes, and nthreads equals the number
of threads per process, which depends on the number of PPN and whether a
dedicated a thread is used ()).

nthreads variable lx 0.08 src_opt 3
npey variable lz 0.08 timedep 1
npez variable ly 0.08 it_det 0
ndimen 3 nmom 4 tf 1.0
nx 128 nang 32 nsteps 10
ny variable ng 72 oitm 40
nz variable mat_opt 1 fluxp 0
iitm 5 scatp 0 angcpy 1
epsi 0.0001 fixup 0 ichunk 16

●

●

●
●

●

●

●

0

20

40

60

80

5 10 15

Numer of Processes per Node (PPN)

Tr
an

sp
or

t S
w

ee
p

(s
ec

on
ds

)

●

Global
Per−VNI

Offload
HMCS<2>USC

CSync
LockQ−MCS

LockQ−MTX

(a) PPN Tuning

0

25

50

75

100

2304 4608

Total Number of Cores

Global Per−VNI Offload HMCS<2>USC
CSync LockQ−MCS LockQ−MTX

(b) Strong Scaling with PPN = 6
Figure 8: Performance with the "Transport Sweep" stage of SNAP on the
Broadwell cluster: (a) results with problem size {nx, ny, nz } = {128, 72, 64}
with respect to PPN; (b) strong scaling with the problem size {nx, ny, nz } =
{128, 192, 192} from 64 to 128 nodes. npey and npez have been computed to be
as close to each other as possible.

losses. Beyond four, however, it is counter productive and results
in up to 70% performance degradation at PPN = 18.

Because of the neighborhood communication pattern in SNAP,
the optimal PPN can be preserved regardless of the number of
nodes provided that the problem size per process does not change
significantly. For instance, by weakly scaling the previous small
problem to {nx ,ny,nz} = {128, 192, 192} on 64 nodes, the behavior
(Figure 8.b, 2,304 cores) is similar to that of the smaller-scale exper-
iment (Figure 8.a, PPN=6). In a strong-scaling case, however, the
optimal PPN is not portable because the system shifts to a more
communication-intensive regime and reduces the degradation suf-
fered in the Offload model (Figure 8.b, 4,608 cores).

These experiments with SNAP confirmed that the software com-
bining methods show no significant degradation under low con-
tention and equip the user with the same flexibility as the global
locking methods without negative side effects. Offload, on the other
hand, is constraining and is justified only when the application
can spare CPU resources, a situation that is not always possible,
especially with compute-intensive codes.

Concluding Remarks
We proposed new thread safety models for multithreaded MPI,

CSync and LockQ, that leverage software combining to mitigate
lock contention. These models were designed as protection mecha-
nisms around independent VNIs, abstract objects meant to capture
independent network resources. CSync shows significant scalabil-
ity improvements over traditional locking but suffers from lack of
asynchrony and overheads in the abscence of contention. LockQ
is a significant step forward in both performance and practicality;
it preserves asynchrony of MPI nonblocking calls, eliminates un-
necessary offloading operations, and is more flexible and easier to

12

Software Combining to Mitigate Multithreaded MPI Contention ICS’19, June 26-28, 2019, Phoenix, AZ, USA

integrate in MPI libraries than CSync is. The comparative evalua-
tion of these models over an Omni-Path fabric shows significant
improvement over existing contention-reducing and contention
management methods. LockQ also shows competitive performance
against software offloading but without sacrificing computational
resources for dedicated communication threads while avoiding
undesirable software offloading overheads at low contention.

The paper focused only on the highly serialized case, in order to
stress the combining synchronization aspect of the thread safety
model and evaluate its contention mitigation capabilities. We are
currently widening the scope of the study to multiple VNIs and
focusing on contention avoidance. This work was also performed
under the totally ordered communication constraint, thus requiring
a totally ordered queue for the LockQ model. This constraint can be
relaxed in favor of more parallelism at the announcing threads by
posting operations at different queues. Such a capability could be
leveraged for hardware awareness (e.g., NUMA-aware) or simply
for contention reduction.

Acknowledgments
This research was supported by the Exascale Computing Project (17-SC-20-SC),

a collaborative effort of the U.S. Department of Energy Office of Science and the
National Nuclear Security Administration, and by the U.S. Department of Energy,
Office of Science, under Contract DE-AC02-06CH11357. We gratefully acknowledge
the computing resources provided and operated by the Laboratory Computing Resource
Center (LCRC) and by the Joint Laboratory for System Evaluation (JLSE) at Argonne
National Laboratory.

References
[1] Abdelhalim Amer, Huiwei Lu, Pavan Balaji, Milind Chabbi, Yanjie Wei, Jeff

Hammond, and Satoshi Matsuoka. 2019. Lock Contention Management in Mul-
tithreaded MPI. ACM Transactions on Parallel Computing (TOPC) 5, 3 (2019),
12.

[2] Abdelhalim Amer, Huiwei Lu, Pavan Balaji, and Satoshi Matsuoka. 2015. Charac-
terizing MPI and Hybrid MPI+Threads Applications at Scale: Case Study with
BFS. In 2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing. IEEE, 1075–1083.

[3] Abdelhalim Amer, Huiwei Lu, Yanjie Wei, Pavan Balaji, and Satoshi Matsuoka.
2015. MPI+ Threads: Runtime Contention and Remedies. In Proceedings of the
20th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP’15). 239–248.

[4] Randal S Baker and Kenneth R Koch. 1998. An Sn Algorithm for the Massively
Parallel CM-200 Computer. Nuclear Science and Engineering 128, 3 (1998), 312–
320.

[5] Pavan Balaji, Darius Buntinas, D. Goodell, W. D. Gropp, and Rajeev Thakur. 2010.
Fine-Grained Multithreading Support for Hybrid Threaded MPI Programming.
International Journal of High Performance Computing Applications (IJHPCA) 24
(2010), 49–57.

[6] Milind Chabbi, Michael Fagan, and John Mellor-Crummey. 2015. High Perfor-
mance Locks for Multi-Level NUMA Systems. In Proceedings of the 20th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming (PPoPP’15).
215–226.

[7] Milind Chabbi and John Mellor-Crummey. 2016. Contention-Conscious, Locality-
Preserving Locks. In Proceedings of the 21st ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming (PPoPP’16). 22:1–22:14.

[8] Hoang-Vu Dang, Sangmin Seo, Abdelhalim Amer, and Pavan Balaji. 2017. Ad-
vanced Thread Synchronization for Multithreaded MPI Implementations. In 17th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CC-
GRID). IEEE, 314–324.

[9] Gábor Dózsa, Sameer Kumar, Pavan Balaji, Darius Buntinas, David Goodell,
William Gropp, Joe Ratterman, and Rajeev Thakur. 2010. Enabling Concurrent
Multithreaded MPI Communication on Multicore Petascale Systems. In Proceed-
ings of the 17th European MPI Users’ Group Meeting Conference on Recent Advances
in the Message Passing Interface (EuroMPI’10). Springer-Verlag, Berlin, Heidelberg,
11–20.

[10] Wataru Endo and Kenjiro Taura. 2018. Parallelized Software Offloading of Low-
Level Communication with User-Level Threads. In Proceedings of the International
Conference on High Performance Computing in Asia-Pacific Region. ACM, 289–298.

[11] Panagiota Fatourou and Nikolaos D. Kallimanis. 2012. Revisiting the Combining
Synchronization Technique. In Proceedings of the 17th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (PPoPP ’12). 257–266.

[12] Sanjay Ghemawat and Paul Menage. 2009. Tcmalloc: Thread-Caching Malloc.
[13] Paul Grun, Sean Hefty, Sayantan Sur, David Goodell, Robert D Russell, Howard

Pritchard, and Jeffrey M Squyres. 2015. A Brief Introduction to the OpenFabrics
Interfaces - A New Network API for Maximizing High Performance Application
Efficiency. In 2015 IEEE 23rd Annual Symposium onHigh-Performance Interconnects
(HOTI’15). 34–39.

[14] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. 2010. Flat Combining
and the Synchronization-Parallelism Tradeoff. In Proceedings of the twenty-second
annual ACM symposium on Parallelism in algorithms and architectures. ACM,
355–364.

[15] Maurice Herlihy and Nir Shavit. 2011. The Art of Multiprocessor Programming.
Morgan Kaufmann.

[16] Nathan Hjelm, Matthew GF Dosanjh, Ryan E Grant, Taylor Groves, Patrick
Bridges, and Dorian Arnold. 2018. Improving MPI Multi-Threaded RMA Com-
munication Performance. In Proceedings of the 47th International Conference on
Parallel Processing. ACM, 58.

[17] Torsten Hoefler, James Dinan, Darius Buntinas, Pavan Balaji, Brian Barrett, Ron
Brightwell, William Gropp, Vivek Kale, and Rajeev Thakur. 2013. MPI+MPI: A
New Hybrid Approach to Parallel Programming with MPI plus Shared Memory.
Computing 95, 12 (2013), 1121–1136.

[18] Torsten Hoefler, Christian Siebert, and Andrew Lumsdaine. 2010. Scalable Com-
munication Protocols for Dynamic Sparse Data Exchange. In Proceedings of the
15th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming
(PPoPP ’10). 159–168.

[19] Krishna Kandalla, Peter Mendygral, Nick Radcliffe, Bob Cernohous, David Knaak,
Kim McMahon, and Mark Pagel. 2016. Optimizing Cray MPI and SHMEM Soft-
ware Stacks for Cray-XC Supercomputers based on Intel KNL Processors. Cray
User Group (2016).

[20] Alex Kogan and Erez Petrank. 2011. Wait-Free Queues with Multiple Enqueuers
and Dequeuers. In Proceedings of the 16th ACM Symposium on Principles and
Practice of Parallel Programming (PPoPP ’11). 223–234.

[21] Sameer Kumar, Amith R Mamidala, Daniel A Faraj, Brian Smith, Michael Block-
some, Bob Cernohous, Douglas Miller, Jeff Parker, Joseph Ratterman, Philip
Heidelberger, et al. 2012. PAMI: A Parallel Active Message Interface for the Blue
Gene/Q Supercomputer. In 2012 IEEE 26th International Parallel and Distributed
Processing Symposium (IPDPS ’12). 763–773.

[22] Peter Magnusson, Anders Landin, and Erik Hagersten. 1994. Queue Locks on
Cache Coherent Multiprocessors. In Parallel Processing Symposium, 1994. Pro-
ceedings., Eighth International. IEEE, 165–171.

[23] John M Mellor-Crummey and Michael L Scott. 1991. Algorithms for Scalable
Synchronization on Shared-memory Multiprocessors. ACM Transactions on
Computer Systems (TOCS) 9, 1 (1991), 21–65.

[24] Yoshihiro Oyama, Kenjiro Taura, and Akinori Yonezawa. 1999. Executing Parallel
Programs with Synchronization Bottlenecks Efficiently. In Proceedings of the
International Workshop on Parallel and Distributed Computing for Symbolic and
Irregular Applications, Vol. 16. Citeseer.

[25] GF Pfister, WC Brantley, DA George, SL Harvey, WJ Kleinfelder, KP McAuliffe,
EA Melton, VA Norton, and J Weiss. 1985. The IBM Research Parallel Processor
Prototype (RP3): Introduction and Architecture. In Proceedings of the 1985 Inter-
national Conference on Parallel Processing: August 20–23, 1985. IEEE Computer
Society Press, Washington, DC.

[26] Ken Raffenetti, Abdelhalim Amer, Lena Oden, Charles Archer, Wesley Bland,
Hajime Fujita, Yanfei Guo, Tomislav Janjusic, Dmitry Durnov, Michael Blocksome,
Min Si, Sangmin Seo, Akhil Langer, Gengbin Zheng, Masamichi Takagi, Paul
Coffman, Jithin Jose, Sayantan Sur, Alexander Sannikov, Sergey Oblomov,Michael
Chuvelev, Masayuki Hatanaka, Xin Zhao, Paul Fischer, Thilina Rathnayake, Matt
Otten, Misun Min, and Pavan Balaji. 2017. Why is MPI So Slow?: Analyzing the
Fundamental Limits in Implementing MPI-3.1. In Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis
(SC ’17). 62:1–62:12.

[27] Pavel Shamis, Manjunath Gorentla Venkata, M Graham Lopez, Matthew B Baker,
Oscar Hernandez, Yossi Itigin, Mike Dubman, Gilad Shainer, Richard L Graham,
Liran Liss, et al. 2015. UCX: An Open Source Framework for HPC Network
APIs and Beyond. In 2015 IEEE 23rd Annual Symposium on High-Performance
Interconnects (HOTI’15). 40–43.

[28] Karthikeyan Vaidyanathan, Dhiraj D. Kalamkar, Kiran Pamnany, Jeff R. Ham-
mond, Pavan Balaji, Dipankar Das, Jongsoo Park, and Bálint Joó. 2015. Improving
Concurrency and Asynchrony in MultithreadedMPI Applications Using Software
Offloading. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (SC ’15). 30:1–30:12.

[29] Chaoran Yang and John Mellor-Crummey. 2016. A Wait-Free Queue as Aast as
Fetch-and-Add. In ACM SIGPLAN Notices, Vol. 51. ACM, 16.

[30] Pen-Chung Yew, Nian-Feng Tzeng, et al. 1987. Distributing Hot-Spot Addressing
in Large-Scale Multiprocessors. IEEE Trans. Comput. 100, 4 (1987), 388–395.

13

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 MPI+Threads Interaction
	2.2 Terminology and Baseline
	2.3 Survey of Existing Thread Safety Models

	3 Combining-Based Thread Safety Models
	3.1 Software Combining in Practice
	3.2 Critical Section Scope
	3.3 The CSync Thread Safety Model
	3.4 The LockQ Thread Safety Model
	3.5 Nonblocking Progress Management
	3.6 Progress and Asynchrony in LockQ
	3.7 Implementation

	4 Evaluation
	4.1 Evaluation Platforms
	4.2 Experimental Method
	4.3 Communication-Intensive Benchmarks
	4.4 Breadth-First Search
	4.5 SNAP: Particle Transport

	5 Concluding Remarks
	Acknowledgments
	References

