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Abstract—Multithreaded MPI applications are gaining pop-
ularity in scientific and high-performance computing. While
the combination of programming models is suited to support
current parallel hardware, it moves threading models and their
interaction with MPI into focus. With the advent of new threading
libraries, the flexibility to select threading implementations of
choice is becoming an important usability feature. Open MPI has
traditionally avoided componentizing its threading model, relying
on code inlining and static initialization to minimize potential
impacts on runtime fast paths and synchronization. This paper
describes the implementation of a generic threading runtime
support in Open MPI using the Opal Modular Component
Architecture. This architecture allows the programmer to select
a threading library at compile- or run-time, providing both
static initialization of threading primitives as well as dynamic
instantiation of threading objects. In this work, we present the
implementation, define required interfaces, and discuss trade-offs
of dynamic and static initialization.

Index Terms—MPI, MCA, threading, hybrid programming

I. INTRODUCTION

The end of Dennard scaling has led to an increase in node-
level parallelism to achieve higher computational performance.
Particular representatives of this trend are multicore processors
and accelerators that together with a suitable programming
model expose the additional, node-level parallelism to the
developer.

The rise of these architectures has in turn increased the
importance of hybrid programming models in which node-
level programming models such as OpenMP [26] are coupled
with Message Passing Interfaces (MPI). This is commonly
referred to as MPI+X. In such cases, MPI is used to implement
inter-node work coordination and data exchange. Sophisticated
programs utilizing hybrid parallel programming commonly
attempt to overlap communication and computation to achieve
high performance, thus require the use of both programming
models and their runtime libraries at the same time.

To increase the efficiency of such hybrid approaches, a
considerable amount of research has been focused on resource
management and scheduling. Central to an efficient coex-
istence of runtimes is the need to avoid potential resource
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conflicts between threads used by the MPI runtime and the
mode-level parallel programming model such as OpenMP. The
MPICH MPI implementation [12] has made progress in this
area, and a corresponding effort is required for Open MPI
so that both widely-used MPI implementations can support
hybrid MPI+X applications efficiently. While differences in
software architectures require different solutions, a common
design goal towards modular and intentional support for thread
management is desirable for both.

Additional drivers for updating the Open MPI threading
layer are new mechanisms anticipated in upcoming revisions
of the MPI standard, like sessions [15]. These capabilities are
designed to better support the composability of applications
and libraries in coupled simulations with multiple binaries
coexisting on a node.

In this use case, coordination of thread resource manage-
ment among different MPI libraries is essential. Several studies
have shown that the use of threading models in composed
runtimes can lead to large speedups in MPI performance [2],
[71, [13], [17], [22], [24], [30]. However, Open MPI [11] has
reduced the number of threading models available in its im-
plementation. Implementors have given priority to optimizing
Open MPI internals, in particular, asynchronous progress [10],
in the context of the Pthreads library at the expense of other
threading models.

This development is understandable from a historical per-
spective. Open MPI supported multiple thread libraries in
the past, including Windows Threads and Solaris Threads.
However, later, as threading models settled on the Pthreads
interface as a common substrate, Open MPI made Pthreads
the exclusive threading model and removed support for other
legacy threading models. The need for this support is driven
by the development of novel, lightweight user-level threading
libraries (ULT) that promise better support of on-node paral-
lelism.

For a motivational insight, we measured the cost of the Fork-
Join and Yield routines for three different threading libraries
shown in Figure 1. Although performance differs due to
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Fig. 1. Results obtained from timing frequent and successive calls to Fork-Join
and Yield on an Intel Xeon E5-2699 CPU (2.30GHz) hint towards significant
performance differences between Pthreads and user-level threading libraries
for certain cases.

distinct design, optimization, and specialization for certain
workloads, this result underlines the importance of a modular
threading support. In this case, the fork-join overheads of the
ULT implementations are up to 100 times smaller than that
of Pthreads while their yield overheads are two to four times
smaller.

Workarounds to Open MPI’s narrow focus on Pthreads exist.
One way to support threading libraries has been to wrap MPI
calls in threading models via the MPI_T interface or similar
means [13], [17], [30]. This indirect approach makes threading
models difficult to deploy in production systems, which either
need to use multiple compiled MPI libraries and different sets
of modules [9] or force the users to compile custom versions
of MPI for personal use.

Part of the reluctance to modularize threading library sup-
port in MPI implementations arises from concerns about the
cost of thread synchronization. Synchronization primitives and
related functions are in the critical path of important runtime
functionality and even minor slowdowns can be detrimental to
performance. The conventional way to avoid these overheads is
to use techniques such as inlining of functions and initializing
data structures like mutexes statically, at compile-time, rather
than relying on dynamic initialization and allocation. However,
as modern CPUs and compilers show improvements in branch
prediction and calling performance of indirect functions, it
is worthwhile to reassess these limitations and to determine
whether they are still obstructing a design towards modularity,
composability, and ultimately, usability.

Interestingly, unlike threading support, other functional
components in Open MPI are modular. For example, a wide
breadth of interchangeable options exists to handle collective
operations. Consequently, the goal of this work is to modu-
larize threading in Open MPI and to allow the exchange of
threading libraries with little effort, comparably to switch-

ing collective algorithms and other Open MPI framework
components. To that end, this paper makes the following
contributions:

¢ Design towards modular support of threading libraries in
Open MPI

o Its initial implementation

¢ An evaluation of calling overheads

We would like to point out that recently our changes to
Open MPI have been incorporated into the master branch
through an accepted pull request'. While performance results
presented to peer-reviewers of the pull request were critical
for its acceptance, we believe that a discussion of this effort,
some implementation details, and results are relevant to an
interested reader as well.

II. BACKGROUND

The requirement for heterogeneous parallel programming
has led to significant efforts to research component archi-
tectures in distributed and high-performance computing. The
goal is to reduce the need for duplication of code, perfor-
mance optimizations, and numerical algorithms when used
in different but comparable contexts. One of the most suc-
cessful outcomes from this effort is the Common Component
Architecture which used ideas, components, and interactions
similar to CORBA [31]. Research into the performance cost of
component architectures has quantified the performance costs
of componentizing an HPC framework to be the equivalent
of two indirect function calls [1]. In practice, those costs
may be deemed acceptable based on software requirements
and use-cases. Open MPI [11] is a product of a movement
towards component architectures, specialized to the needs
of the HPC community [21]. Open MPI avoids the perfor-
mance overhead of some traditional component architectures
by avoiding their distributed and cross-language capabilities
which are not required in this setting. Instead, Open MPI
uses a “bare metal” component architecture using C ABIs
(application binary interfaces) and dynamic shared objects.
This approach minimizes overheads in a performance-sensitive
environment [4]. Open MPI’s Modular Component Architec-
ture (MCA) allows collectives [21], transports [11] and other
MPI functionality to be chosen at runtime, either automatically
or as specified by the user.

Despite exhibiting negligible performance overheads in
many scenarios, the implementation of threading libraries in
Open MPI has not been implemented as an MCA component.
Instead, threading is implemented using static data initializers
and function inlining. The reason for this divergence is that
threading is often in the critical path of many MPI API
calls were even two indirections can lead to unacceptable
performance.

III. DESIGN GOALS

The Open, Portable Access Layer (OPAL) is a basic abstrac-
tion layer in Open MPI responsible for low-level functionality

Thttps://github.com/open-mpi/ompi/pull/6578



at the process level. To implement generic threading support,
we propose the addition of a new OPAL MCA component.
This component defines a generic API to interface with thread-
ing implementations in particular for thread management,
thread synchronization, and thread-local storage. This ap-
proach follows the current structure of the OpenMPI threading
implementation but avoids direct calls to the Pthreads library.

We list specific design goals as follows.

o Allow the selection of threading libraries for Open MPI
at compile or runtime.

o Provide a common interface to threading libraries.

o Provide a common integration framework for scheduling
events like MPI wait-states and synchronization yields.

o Allow the coexistence of multiple threading libraries by
avoiding a shared state.

o Allow multiple threading components to coexist within
applications using multiple MPI sessions.

o Implement MCA threading support incrementally, al-
lowing static linking against threading libraries (hybrid
approach).

While the presented implementation targets all the above-
mentioned goals, not all design goals are further discussed
and evaluated in this work. In this work, we focus on the
design of the MCA component, its hybrid implementation
and performance implications resulting from the use of shared
threading libraries.

IV. IMPLEMENTATION

Our reference implementation promotes threading support
to an interchangeable MCA module. The MCA threading
API is defined as follows. Firstly, a set of header files
located in mca/threads/«.h define the generic API for
thread abstractions and interfacing with the Open MPI MCA
infrastructure. They provide all required interfaces to support
mutexes, condition variables, thread-local storage, and opaque
handles that are used to determine thread identity.

API calls to performance-critical functionality are
declared as static inline but do not provide a definition
(implementation). This requires to provide the corresponding
definitions of those API calls at compile-time. Header
files that provide definitions correspond to particular
threading models and are organized in a directory
structure  as  mca/threads/<threading_model>
/threads_<threading_model>_«*.h. Performance-
critical API definitions of a given threading model such as
*_threads.h, »_mutex.h, x_tsd.h must be declared
with the same decorators and are inlined into their calling
context. Non-performance critical API calls are not inlined
and their definitions are provided at load time of a shared
object file.

This design allows for a gradual shift towards the runtime
selection of threading models. However, following require-
ments formulated by the HPC community, at least in the
short term, threading models must be selected at compile
time rather than using runtime options for this purpose. The
table in Figure 2 gives an overview of the threading API

>
o
—
S
J]
=

gl
g]
_
®

©
o
o
>
o
IS
()
wn =

Threading

[Byte Transfer Layer
@etwork Interface

7

Fig. 2. Visual representation of the OPAL MCA architecture shows several
MCA modules including the newly added threading support.
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and marks those calls implemented as a shared library with a
corresponding entry in the column named S.

To select a particular threading model, the configure option
——with-threads=<threading_model> can be pro-
vided during project configuration. Currently we have added
support for Pthreads and the QThreads [32] and Argobots [28]
threading models. To the interested reader, we provide further
insights into required code changes and considerations below.
A performance evaluation of this architecture is presented in
the next chapter.

A. Other Code Changes

The original Open MPI implementation assumed that
threading was a static, top-level OPAL portability li-
brary. Therefore, all previous references to Pthreads had
to be changed to the MCA threading header files
mca/threads/«.h. This includes all occurrences of direct
Pthread usage in the Open MPI code base. In particular,
process management and event handling (e.g., the OPAL
PMIx module and Libevent support) were using Pthreads calls
directly and these calls needed to be factored out and placed
behind the common OPAL interface.

B. Further Considerations

The implemented MCA threading support requires consid-
ering implications on handling thread identity, event handling,
and key-value management. We discuss this as follows.

The proposed threading architecture maintains assumptions
from the OPAL implementation regarding the nature of thread
identity. In OPAL threads are identified using opaque handles
and compared via special functions. Our reference implemen-
tation maintains that assumption. However, this requirement
places a certain burden on scalable threading libraries that have
no concept of thread identity to maintain a minimal amount
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Fig. 3. The threading module exposes a common API that is subdivided
into different abstraction groups. Calls to shared libraries are marked in the
respective fields of the column S.

of state. The implications of this fact are to be considered in
future work.

To simplify the implementation of asynchronous progress,
Open MPI uses the Libevent library [23] to handle asyn-
chronous progress and polling for event management function-
ality. Note that Libevent is not involved in the critical path for
sending and receiving MPI messages. Libevent relies on a set
of custom callback functions to implement object allocation
and synchronization with its parent runtime system. Our
threading implementation generalizes the previous Pthreads
interface and requires that any compatible threading runtime
provides a set of callback functions and wrappers to ensure
that Libevent is properly integrated into the imported runtime
system. However, as Libevent currently assumes preemption
and calls to the sleep () routine when yielding, a custom
yield function is needed to exploit task context switching in
user-level threading runtimes. Designing and evaluating this
support is subject to future work.

Open MPI relies heavily on thread-local storage which is
used even without MPI_THREAD_MULTIPLE. Thread local

storage is used in the Open MPI’s Open Run-Time Envi-
ronment (ORTE) and the OPAL Unified Communication X
(UCX) [29], hardware locality (hwloc) [S] and Process Man-
agement Interface - Exascale (PMIx) [6] modules. Therefore,
each threading interface must provide an opal_tsd_key
module to implement thread-local storage.

V. EVALUATION

For evaluation, we use the Blake and Voltrino clusters at
Sandia National Laboratories? and the Lassen supercomputer
at Lawrence Livermore National Laboratory®. Blake is a 40
node Intel Xeon Platinum (Skylake) 8160, 2.10GHz - based
cluster with two sockets per node and 24 cores per socket
connected over the Intel OmniPath interconnect. Voltrino is a
Cray XC40m supercomputer consisting of 24 nodes of two
Intel Xeon E5-2698 v3, 2.6GHz (Haswell) processors with
16 cores per socket equipped with an Intel Xeon Phi 7250
processor with 68 cores with 4-way SMT per node. The Lassen
is an IBM POWER9-based supercomputer installed at the
Lawrence Livermore National Laboratory. It consists of 684
nodes with two POWERDY, 2.3 GHz processors per node with
22 cores each.

A. Methodology

For benchmarking we use the function call overhead mea-
surement benchmark FNbench [4] and a multi-threaded bench-
mark for MPI’s one-sided communication interface RMA-
MT [8]. It is designed to measure the threading impact on la-
tency and throughput between two MPI processes. Both bench-
marks were compiled with the Intel C compiler (18.2.199) and
the GCC compiler (gcc/7.3.1) and manually disassembled to
ensure expected code generation and linking.

The function call measurement application microbenchmark
uses the same technique from [4], a library function with
an empty body called either from a shared or static library.
We use the CPU time stamp counter instruction (rdtsc)
that returns an approximated cycle count of the execution of
the kernel that calls the empty body function 10° times. We
output the cycle count normalized to one loop iteration. The
performance of this microbenchmark should only depend on
the cost of an L1 instruction cache hit and the callqg and
retv instructions in the static case while the shared library’s
trampoline function and offset function should exercise to the
function implementation.

To test the performance impact of these calls on threading
libraries within Open MPI, we used the RMA-MT benchmark
suite. The RMA-MT benchmarks measure latency, bandwidth,
and bi-directional behavior between a pair of MPI processes.
RMA-MT benchmarks create a user-specified number of
threads where each thread performs a single or multiple
MPI_Put or MPI_Get operation(s) thus effectively mea-
suring latency and bandwidth. A master thread handles all
synchronization. Locking, flushing, post-start-complete-wait
(PSCW), or fencing behavior can be chosen at runtime.

Zhttps://www.sandia.gov/asc/computational_systems/HA APS html
3https://hpc.llnl.gov/hardware/platforms/lassen
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Fig. 4. Function call overhead for one billion function calls as measured by
the FNbench benchmark. On systems with high single-thread performance,
calls to shared libraries are on average 1.5x slower than calls to static libraries.
Multicore systems like the Xeon Phi, show a higher performance penalty of
5.8x for calls to shared libraries.

For testing we use the Pthread module from the MCA
threading library. Since the reference implementation of mod-
ular threading is a hybrid implementation where the thread-
ing model is chosen and statically linked at compile-time
as described previously, it was necessary to factor out the
currently inlined synchronization functions and move them to
the Pthread threading module. We compare this shared library
implementation against the original hybrid implementation to
evaluate if the cost of calling overhead is sufficiently large to
cause a performance penalty.

B. Results

1) FNbench: Figure 4 shows the calling overhead for one
billion function calls obtained from the function call measure-
ment application microbenchmark on the aforementioned ar-
chitectures. On systems with high single-thread performance,
the use of shared libraries results in a performance slowdown
of 1.7x on the Intel Xeon Skylake and 1.3x on POWERO.
Executions on simpler cores that are typical for large multicore
processors like the Xeon Phi show a performance penalty of
approximately 5.7x for shared library calls.

A more detailed analysis of the generated assembly code
shows that performance results on the POWERY proportionally
correspond to the increased number of instructions in case of
calling a shared library. Figure 5 shows the assembly code of
the test function noop of the FNbench benchmark compiled
as a shared library and how the return address for the branch
instruction (bctr) is computed. The assembler code of the static
library contains only one branch instruction (blr) to an address
specified in the link register. This additional code in the case
of the shared library accounts for approximately 30% of the
total code executed in one loop iteration of the benchmark.

void _ attribute_ ((noinline))
asm volatile("":::);

noop () {

100005c0 <00000038.plt_call.noop>:
100005c0: 18 00 41 £8 std r2,24(rl)
100005c4: 10 81 82 e9 1d rl2,-32496(r2)
100005¢c8: a6 03 89 7d mtctr rl2
100005cc: 20 04 80 4e bctr

Fig. 5. Assembly code of the noop test function in FNbench compiled as a
shared library for the IBM POWERSY processor shows the explicit computation
of the return address and the branch instruction. This is opposed to the single
branching instruction generated by the compiler in case of calling a static
function.

This corresponds to the proportionally higher instructions per
iteration count and the resulting slowdown shown in Figure 4.

The assembly code of the same test function compiled
as a shared library for Intel’s instruction set architecture
shows a single return instruction that internally implements
the return semantics. However, its implementation accounts
for a significant increase in instructions per iteration of the
benchmark application which is proportional to the slowdown
as reported previously.

Even though the assembly code for both, the Intel Xeon
and Xeon Phi are similar, the Xeon Phi shows a significant
performance difference. The Xeon Phi misses 49% of branches
leading to a 4.2x loss of branch throughput (684.4 M/sec
compared to 161.8 M/sec) as opposed to 0.02% branch misses
on the Intel Xeon Skylake. Further, the variation in observed
cycles per iteration expressed as the standard deviation in 4
is potentially due to variations of library placement in virtual
address space which can affect performance [18].

2) RMA-MT: To test parallel MPI with the proposed archi-
tecture, we invoke the RMA-MT benchmark as below.

mpirun —--np 2 —--map-by ppr:<1l,2>:node
—--bind-to socket \
rmamt_<bw, lat> -x -t <num_threads>\
-0 put -s fence

This allows us to measure unidirectional put-performance
with fencing synchronization to exercise the effects of locking
behavior on the MPI implementation and to observe any
changes relating to function call behavior.

Figure 6 shows the transport layer configuration parameters
for these experiments. The RMA-MT benchmark consists
of the bandwidth and latency applications (rmamt_bw and
rmamt_lat). We show performance results, both in terms
of bandwidth (MB/sec) and latency (microseconds) in Fig-
ures 7, 8, 9, and 10.

Given the overheads of using a shared library function calls,
we expected a similar performance penalty when switching
to shared libraries in RMA-MT. However, this is not the
case. Shared libraries are within the margin of error for most
cases and are slightly faster on Intel Xeon Phi and Haswell
architectures.
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Shared memory/Linux CMA: yes

Shared memory/Linux KNEM: no

Shared memory/XPMEM: no

TCP: yes

Fig. 6. OpenMPI transport layer configuration for RMA-MT experiments

The reason for the much lower performance penalty of
shared library calls in RMA-MT is the amount of work per
call. In case of the RMA-MT benchmark, substantially more
code is executed per function call, making the overheads less
prevalent.

Further, on Haswell, shown in Figure 7, we observed that
for 16 threads per process on two nodes, Open MPI spends
less time in the UGNI BTL # progress engine. However, the
performance counters show roughly equivalent values aside for
context switches. This is possibly due to changes in user-space
mutex (futex) behavior for shared library executions leading
to fewer kernel traps. This manifests especially for executions
with smaller message sizes with a higher overhead-to-payload
ratio.

On the Xeon Phi architecture shown in Figure 8§ we see
roughly equivalent bandwidth performance but better message
latency in case of a shared library. We posit that this is due
to better instruction cache locality on less capable nodes. The
benefits of inlining are counterbalanced by the lack of cache
locality. Concurrency matter more on cores with lower single-
threaded performance because there are typically more cores
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Fig. 7. Executions of the RMA-MT benchmark on th Intel Xeon E5-2698-
based system (Voltrino) show a performance increase in terms of bandwidth
in case of using shared libraries. Bandwidth peaks at 13,5 GB/sec and
9,47GB/sec for the respective execution scenario.

per node leading to greater thread contention. Again, this
manifests in the case of smaller messages sizes with a higher
overhead-to-payload ratio.

On the Intel Skylake and IBM POWERY systems, the
additional calling overhead is marginal, as shown in Figures 9
and 10.

C. Summary and Discussion

The change in HPC hardware architectures has led to a
major difference in the cost of function calls via static or
shared libraries, especially as hardware architects attempt to
scale performance by adding simpler cores rather than aiming
for greater single-thread performance. This is a fundamen-
tally different result when comparing to early work in [4]
which showed negligible performance difference on higher
performance single-core executions on previous generations
of hardware.
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Fig. 8. Performance results obtained on the Intel Xeon Phi 7250-based system
(Voltrino) show a minor performance increase in case of using shared libraries.
The achieved bandwidth peaks at 5.4GB/sec and 9.42GB/sec for the respective
execution scenario.

In practice, shared libraries are comparable to static li-
braries. The primary driver for this result is the higher amount
of work per call in real-world examples as well as differences
in caching behavior and fewer context switches. On KNL the
smaller instruction cache footprint of shared libraries better
utilizes KNL’s smaller instruction caches while on Haswell
these differences come from better progress behavior due to
fewer kernel calls for synchronization.

VI. RELATED WORK

The idea of integrating threading models in MPI is not
new. There is extensive literature examining how to manage
contention for programs that couple MPI communication
and on-node threading using user-level threading runtimes.
MPICH+ULT [20] integrates MPICH [12] with the Argob-
ots [28] user-level threading runtime and aims to minimize
lock contention. MPIQ [30] uses the Qthreads [32] runtime
to co-schedule MPI and application tasks. OMPSs [22]

RMA-RT, Skylake, 1 node(s), 1 thread(s) per node

—— Shared
--- Static
Bandwidth

I 350

+ 300
104

- 250

MR

—— Shared I 200
--- Static

Latency

10°

- 150

Bandwidth(MB/s)
Latency(us)

100
10?

- 50

10? 10° 104 10° 10°

Total size (bytes)

10° 10t

RMA-RT, Skylake, 1 node(s), 8 thread(s) per node

—— Shared
--- Static
Bandwidth

10°
25

—
15}
>

20

NIRRT

—— Shared
--- Static
Latency

Bandwidth(MB/s)
5

-
o
N

Lol

102 10° 104 10° 10°

Total size (bytes)

10!

Fig. 9. Performance results obtained from on the Xeon Platinum 8160
system (Blake) show results for single-node executions for 1 and 12 threads.
Bandwidth peaks at 11,2GB/sec and 86GB/sec for single and multi-threaded
(single node, shared memory BTL) executions respectively.

provides an OpenMP-like task model that can interact with
MPI. However, these integration mechanisms differ from the
presented work. They emphasize the integration of MPI and a
particular programming model runtime, while the current work
explores the practicality of an initial decoupling of MPI and
pluggable runtimes.

The composition of pluggable architectures has been ad-
dressed by Lithe [27] and HiPER [13]. Each proposes a
modular system to compose and integrate multiple runtimes.
Lithe provides a common hierarchical scheduling substrate
that is the target of runtime shims to mimic the APIs of other
runtimes while scheduling them together. HiPER specifies a
common module interface and user-level scheduling mecha-
nism that allows users to write wrappers around HPC libraries
and co-schedule them through defined module behaviors. Our
approach is most similar to the Lithe approach, but rather than
implementing a specific scheduling mechanism we provide a
shim API to plug in runtimes and access their capabilities
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Fig. 10. Performance results obtained from the RMA-MT benchmark on the
IBM POWERO system (Lassen) for two process-to-node mapping scenarios.
Results show comparable performance in both cases for shared and statically
linked threading libraries peaking equally at a bandwidth of 32GB/sec and
12GB/sec in each scenario.

through a library interface.

An alternative approach is the one used by MassiveThreads
[25], Process-In-Process [16] and Lithe’s Pthreads [27] front-
end. Rather than making a shared shim library, they expose
the Pthreads APl and implement novel runtimes under it.
This scheme fundamentally changes the mechanisms of imple-
mentation, promoting kernel-level threading to the user-level.
Our approach is compatible with all of these mechanisms.
Modularizing the Pthreads MCA makes it possible to add any
of these runtimes, potentially making them compatible with
proposed MPI standards enhancements like sessions [15].

VII. FUTURE WORK

To better implement asynchronous progress in the MCA
threading module, an improved Libevent library integration
with lightweight threading models is desirable. Currently, the
Libevent library assumes preemption and does not yield by

default. Instead, it enters a sleep state in cases such as waiting
for a file descriptor until woken up by the operating system.
This behavior interferes with lightweight threading libraries
that typically require tasks to be cooperative and to voluntarily
yield after some time. It may be necessary to enhance the
existing Libevent MCA framework to allow for use of event
handling libraries optimized for a particular threading model.

The internal synchronization of Open MPI critical sections
also makes assumptions of a Pthreads-based, coarse synchro-
nization model. Finer grained locking of critical sections in
the runtime [3], [19] would help support user-level and other
fine-grained threading models.

MCA threading support would also benefit from alternative
ways to represent thread identity. Savings in the per-thread
state would make user-level threading models like Qthreads
and Argobots more scalable if individual lightweight threads
would no longer require per-thread data structures.

A good test of the robustness of this work would be to
integrate MPI Sessions [15]. This integration would exercise
the composability of different runtimes, possibly requiring a
more substantial runtime integration as in Lithe [27] or Quo
[14].

Finally, as seen in Section V, there are still aspects of
the performance gains from using shared libraries for thread
synchronization that would benefit from further investigation,
including instruction cache and futex behavior. Exploring such
issues would give a deeper understanding of the trade-offs
in the future use of shared versus static libraries in MPI
implementations.

VIII. CONCLUSION

The shift towards heterogeneous and multicore architectures
in HPC has made threading and the associated requirement for
efficient thread management a challenging problem.

A growing body of research has attempted to address the
issue of coordinating application and MPI threading runtimes.
However, prior work has neither been designed to fit nor been
integrated into a component-based system like Open MPI’s
MCA. Thus, in practice, the use of threading runtimes remains
stuck in a fixed compile-time approach centric to Pthreads or
subject to the use of wrappers and other workarounds. In this
work, we have described a new MCA architecture enabling
the integration of MPI and threading libraries at run time. We
also implemented a reference version of the integrated runtime
system and evaluated its performance characteristics.

Our evaluation addresses two of the most pressing issues
surrounding such componentization of threading in MPI im-
plementations: understanding implications on calling over-
heads when using shared libraries and performance implica-
tions of the proposed solution in a multi-threaded, latency- and
bandwidth-sensitive microbenchmark. Our evaluation shows
that despite the increasing cost of function calls in shared
libraries, especially on many-core systems with slower single-
thread performance, shared libraries can perform comparably
to static libraries in Open MPL



Our work on modular threading support can be extended
to cover runtime composition and co-scheduling of MPI run-
times using various user-level threading libraries. Because our
work has been contributed to the Open MPI code base, the
community can further participate in continuous development
towards generic support of threading in MPL
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