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Short Summary
● We focus on a fork-join task parallel programming 

model.
● “Cut-off” is an optimization technique for task parallel 

programs to control granularity.
● We had developed a series of compiler optimization 

techniques for automatic cut-off (“static cut-off”[*])

Keyword: divide-and-conquer

[*] Iwasaki et al., A Static Cut-off for Task Parallel Programs, PACT '16, 2016.
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Short Summary
● We focus on a fork-join task parallel programming 

model.
● “Cut-off” is an optimization technique for task parallel 

programs to control granularity.
● We had developed a series of compiler optimization 

techniques for automatic cut-off (“static cut-off”[*])
● This study proposes an automatic cut-off technique with 

an autotuning method to obtain the best combination 
of these techniques for higher performance.

Keyword: divide-and-conquer

[*] Iwasaki et al., A Static Cut-off for Task Parallel Programs, PACT '16, 2016.
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Importance of Multi-threading
● The number of CPU cores gets larger and larger.

● Multi-threading is essential to exploiting modern 
processors.

→ A task parallel model is one of the most promising
     parallel programming models.

Intel Xeon Phi (Knights Corner) is a typical example:
it has 60 cores, supporting over 200 hardware threads.
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html

We didn't use it for evaluation, though.
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Task Parallel Programming Models
● Task parallelism is a popular parallel programming model.

– Adopted by many famous systems/libraries:
● e.g., OpenMP (since ver. 3.0), Cilk / Cilk Plus, Intel TBB …

● It has two major features:
– Dynamic load balancing
– Suitability for divide-and-conquer algorithms

● In this talk, we focus on a “fork-join task parallel model.”

Intel Cilk Plus

Cilk

Intel TBB
* Each image is from their official pages.
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Fork-join Task Parallelism
● We use program examples given in Cilk syntax.
● Two basic keywords are provided to express

task parallelism: spawn and sync.
– Spawn (≒ fork) : create a task as a child, which will be 

executed concurrently.
– Sync (≒ join) : wait all tasks created (or spawned) by itself. 

void vecadd(float* a, float* b, int n){
  for(int i = 0; i < n; i++)
    a[i] += b[i];
}

void vecadd(float* a, float* b, int n){
  if(n == 1){
    *a += *b;
  }else{
    spawn vecadd(a, b, n/2);
    spawn vecadd(a+n/2, b+n/2, n-n/2);
    sync;
  }
}Same meaning.



9

Fork-join Task Parallelism
● We use program examples given in Cilk syntax.
● Two basic keywords are provided to express

task parallelism: spawn and sync.
– Spawn (≒ fork) : create a task as a child, which will be 

executed concurrently.
– Sync (≒ join) : wait all tasks created (or spawned) by itself. 

● The main target is a divide-
and-conquer algorithm.
– e.g., sort, FFT, FMM, AMR,

        cache-oblivious GEMM

void vecadd(float* a, float* b, int n){
  if(n == 1){
    *a += *b;
  }else{
    spawn vecadd(a, b, n/2);
    spawn vecadd(a+n/2, b+n/2, n-n/2);
    sync;
  }
}
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Overheads of Task Parallel Program
● In general, task parallel runtime is designed to handle 

fine-grained parallelism efficiently.
● However, extreme fine granularity imposes large 

overheads, degrading the performance.
void vecadd(float* a, float* b, int n){
  if(n == 1){
    *a += *b;
  }else{
    spawn vecadd(a, b, n/2);
    spawn vecadd(a+n/2, b+n/2, n-n/2);
    sync;
  }
}

This vecadd is a too fine-grained task;
one leaf task only calculates *a += *b.



11

Overheads of Task Parallel Program
● In general, task parallel runtime is designed to handle 

fine-grained parallelism efficiently.
● However, extreme fine granularity imposes large 

overheads, degrading the performance.

● Cut-off has been known as an effective optimization 
technique.

void vecadd(float* a, float* b, int n){
  if(n == 1){
    *a += *b;
  }else{
    spawn vecadd(a, b, n/2);
    spawn vecadd(a+n/2, b+n/2, n-n/2);
    sync;
  }
}

This vecadd is a too fine-grained task;
one leaf task only calculates *a += *b.
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Cut-off: An Optimization Technique
● Cut-off is a technique to reduce a tasking overhead by 

stop creating tasks in a certain condition.
– i.e., execute a task in serial in that condition.

● Programmers commonly
apply it manually.

void vecadd(float* a, float* b, int n){
  if(n == 1){
    *a += *b;
  }else{
    spawn vecadd(a, b, n/2);
    spawn vecadd(a+n/2, b+n/2, n-n/2);
    sync;
  }
}

void vecadd(float* a, float* b, int n){
  if(1<= n && n <=1000){
    vecadd_seq(a, b, n);
  }else{
    spawn vecadd(a, b, n/2);
    spawn vecadd(a+n/2, b+n/2, n-n/2);
    sync;
  }
}
//Sequential version of vecadd 
void vecadd_seq(float* a, float* b, int n){
  if(n == 1){
    *a += *b;
  }else{
    /*spawn*/vecadd_seq(a, b, n/2);
    /*spawn*/vecadd_seq(a+n/2, b+n/2, n-n/2);
    /*sync;*/
  }
}

Cut-off A cut-off condition

Call a sequential vecadd
if 1 <= n && n <= 1000



13

Cut-off + Further Optimizations

● In addition to reducing tasking overheads, further 
transformations are applicable to serialized tasks
in some cases.

void vecadd(float* a, float* b, int n){
  if(1 <= n && n <= 4096){
    vecadd_seq(a, b, n);
  }else{
    spawn vecadd(a, b, n/2);
    spawn vecadd(a+n/2, b+n/2, n-n/2);
    sync;
  }
}
void vecadd_seq(float* a, float* b, int n){
  for(int i = 0; i < n; i++)
    a[i] += b[i];
}

void vecadd(float* a, float* b, int n){
  if(n == 1){
    *a += *b;
  }else{
    spawn vecadd(a, b, n/2);
    spawn vecadd(a+n/2, b+n/2, n-n/2);
    sync;
  }
}

2. Transformation

1. Cut-off

vecadd_seq() is loopified.
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Dynamic Cut-off
● Most previous studies on automatic cut-off [*1,*2,*3] 

focused on adaptive cut-off (dynamic cut-off)
– Dynamic cut-off is a technique not creating tasks when 

runtime information tells task creation is not beneficial.
● Runtime information:

a total number of tasks, task queue length, execution 
time, depth of tasks, frequency of work stealing etc...

● Problems:
Cost to evaluate a cut-off condition is large,
Optimizations after the cut-off are less applicable.

[*1] Bi et al. An Adaptive Task Granularity Based Scheduling for Task-centric
       Parallelism, HPCC '14, 2014
[*2] Duran et al. An Adaptive Cut-offfor Task Parallelism, SC '08, 2008
[*3] Thoman et al. Adaptive Granularity Control in Task Parallel Programs
       Using Multiversioning, Euro-Par'13, 2013

Related Work

Dynamic cut-off advantage:
wider applicable range.
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Our Goal: Automatic Cut-off
● Our goal is developing automatic cut-off including 

further optimizations automatically for
task parallel programs without any manual cut-off.

void vecadd(float* a, float* b, int n){
  if(1 <= n && n <= 4096){
    vecadd_seq(a, b, n);
  }else{
    spawn vecadd(a, b, n/2);
    spawn vecadd(a+n/2, b+n/2, n-n/2);
    sync;
  }
}
void vecadd_seq(float* a, float* b, int n){
  // Vectorize the following for-loop,
  // since task keywords implicitly reveal
  // each iteration is independent.
  for(int i = 0; i < n; i++)
    a[i] += b[i];
}
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Our Goal: Automatic Cut-off
● Our goal is developing automatic cut-off including 

further optimizations automatically for
task parallel programs without any manual cut-off.

– Compiler optimizations
for simple loops have
been well developed.

● Loop blocking, unrolling
interchange, etc...

→ Develop optimizations
for divide-until-trivial tasks.

void vecadd(float* a, float* b, int n){
  if(1 <= n && n <= 4096){
    vecadd_seq(a, b, n);
  }else{
    spawn vecadd(a, b, n/2);
    spawn vecadd(a+n/2, b+n/2, n-n/2);
    sync;
  }
}
void vecadd_seq(float* a, float* b, int n){
  // Vectorize the following for-loop,
  // since task keywords implicitly reveal
  // each iteration is independent.
  for(int i = 0; i < n; i++)
    a[i] += b[i];
}

Let's say divide-until-trivial task parallel programs.
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What we've proposed: Static Cut-off
● Static cut-off is an automatic cut-off method including 

a series of compile-time optimization techniques for 
task parallel programs.

● It tries to aggregate tasks near leaves.

+ Low risk of serious loss of parallelism. 

+ Chance to apply powerful compiler optimizations 
    after cut-off.

We proposed it
in PACT '16 [*].

[*] Iwasaki et al., A Static Cut-off for Task Parallel Programs, PACT '16, 2016.
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What we've proposed: Static Cut-off
● Static cut-off is an automatic cut-off method including 

a series of compile-time optimization techniques for 
task parallel programs.

● It tries to aggregate tasks near leaves.

+ Low risk of serious loss of parallelism. 

+ Chance to apply powerful compiler optimizations 
    after cut-off.

We proposed it
in PACT '16 [*].

[*] Iwasaki et al., A Static Cut-off for Task Parallel Programs, PACT '16, 2016.

Encircled by                
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Key idea: use a height instead of a depth.
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Depth/Height of Tasks
● Consider a task tree of fib(16) below.

fib calculates
   

void fib(int n, int* r){
  if(n < 2){
    *r = n;
  }else{
    int a, b;
    spawn fib(n-1, &a);
    spawn fib(n-2, &b);
    sync;
    *r = a + b;
  }
}

Fn  =
n                  if n < 2
Fn-1 + Fn-2   otherwise

n=1 n=0
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n=3
n=1 n=1 n=0

n=2
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n=1 n=0
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n=1 n=1 n=0
n=2

n=4

n=2 n=9

n=14 n=15
n=16(root)
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Depth/Height of Tasks
● Consider a task tree of fib(16) below.

fib calculates
   

– Depth is easy to obtain.
● e.g., increment a variable from the root.

n=1 n=0
n=2

n=3
n=1 n=1 n=0

n=2
n=4

n=5

n=1 n=0
n=2

n=3
n=1

n=6

n=7

n=2
n=1 n=0
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n=2 n=9

n=14 n=15
n=16(root)

Depth

void fib(int n, int* r){
  if(n < 2){
    *r = n;
  }else{
    int a, b;
    spawn fib(n-1, &a);
    spawn fib(n-2, &b);
    sync;
    *r = a + b;
  }
}

Fn  =
n                  if n < 2
Fn-1 + Fn-2   otherwise

Cut-off in ”depth > 6”
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Depth/Height of Tasks
● Consider a task tree of fib(16) below.

fib calculates
   

– Height is difficult to calculate, but it is
suitable for a cut-off condition.
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n=1 n=1 n=0
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n=4

n=2 n=9

n=14 n=15
n=16(root)

Depth

Height

void fib(int n, int* r){
  if(n < 2){
    *r = n;
  }else{
    int a, b;
    spawn fib(n-1, &a);
    spawn fib(n-2, &b);
    sync;
    *r = a + b;
  }
}

Fn  =
n                  if n < 2
Fn-1 + Fn-2   otherwise

Cut-off in ”height < 3”

Cut-off in ”depth > 6”
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Static Cut-off Flow
1. Try to calculate a height-based cut-off condition.
– If the height-based cut-off condition is calculable ... 

– Otherwise...

n=1 n=0
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n=1 n=1 n=0
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n=1 n=0
n=2

n=3
n=1
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n=2
n=1 n=0

n=2
n=3

n=1 n=1 n=0
n=2

n=4

Height

2. Decide a height parameter H.
3. Apply one of the following:

● Static task elimination
● Code-bloat-free inlining
● Loopification

2. Apply the dynamic cut-off [*]

Show the examples later.

[*] P. Thoman et al. Adaptive granularity control
     in task parallel programs using
     multiversioning. Euro-Par '13, 2013



24

Examples of Static Cut-off

void vecadd(float* a, float* b, int n){
  if(n == 1){
    *a += *b;
  }else{
    spawn vecadd(a, b, n/2);
    spawn vecadd(a+n/2, b+n/2, n-n/2);
    sync;
  }
}

void vecadd(float* a, float* b, int n){
  if(1 <= n && n <= 1024){
    vecadd_seq(a, b, n);
  }else{
    spawn vecadd(a, b, n/2);
    spawn vecadd(a+n/2, b+n/2, n-n/2);
    sync;
  }
}
void vecadd_seq(float* a, float* b, int n){
  ???
}

H = 10 in this case.

Use heuristics.2. Decide a height parameter H.

3. Apply one of the following:
– Static task elimination
– Code-bloat-free inlining
– Loopification
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Examples of Static Cut-off

void vecadd(float* a, float* b, int n){
  if(n == 1){
    *a += *b;
  }else{
    spawn vecadd(a, b, n/2);
    spawn vecadd(a+n/2, b+n/2, n-n/2);
    sync;
  }
}

void vecadd(float* a, float* b, int n){
  if(1 <= n && n <= 1024){
    vecadd_seq(a, b ,n);
  }else{
    spawn vecadd(a, b, n/2);
    spawn vecadd(a+n/2, b+n/2, n-n/2);
    sync;
  }
}
void vecadd_seq(float* a, float* b, int n){
  if(n == 1){
    *a += *b;
  }else{
    /*spawn*/vecadd_seq(a, b, n/2);
    /*spawn*/vecadd_seq(a+n/2, b+n/2, n-n/2);
    /*sync;*/ 
  }
}

Just remove spawn & sync
to reduce the overheads.

2. Decide a height parameter H.

3. Apply one of the following:
– Static task elimination
– Code-bloat-free inlining
– Loopification
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Examples of Static Cut-off

void vecadd(float* a, float* b, int n){
  if(n == 1){
    *a += *b;
  }else{
    spawn vecadd(a, b, n/2);
    spawn vecadd(a+n/2, b+n/2, n-n/2);
    sync;
  }
}

void vecadd(float* a, float* b, int n){
  if(1 <= n && n <= 1024){
    vecadd_seq(a, b ,n);
  }else{
    spawn vecadd(a, b, n/2);
    spawn vecadd(a+n/2, b+n/2, n-n/2);
    sync;
  }
}
void vecadd_seq(float* a, float* b, int n){
  if(n == 1){
    *a += *b;
  }else{
    for(int i = 0; i < 2; i++){
      float *a2, *b2; int n2;
      switch(i){
      case 0:
        a2=a;     b2=b    ; n2=n/2;   break;
      case 1:
        a2=a+n/2; b2=b+n/2; n2=n-n/2; break;
      }
      //Inline 10 times here.
      vecadd_seq(a2,b2,n2);
    }
  }
}

Apply inlining to reduce
function call overheads

w/o exponential code growth.

2. Decide a height parameter H.

3. Apply one of the following:
– Static task elimination
– Code-bloat-free inlining
– Loopification
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Examples of Static Cut-off

void vecadd(float* a, float* b, int n){
  if(n == 1){
    *a += *b;
  }else{
    spawn vecadd(a, b, n/2);
    spawn vecadd(a+n/2, b+n/2, n-n/2);
    sync;
  }
}

void vecadd(float* a, float* b, int n){
  if(1 <= n && n <= 1024){
    vecadd_seq(a, b ,n);
  }else{
    spawn vecadd(a, b, n/2);
    spawn vecadd(a+n/2, b+n/2, n-n/2);
    sync;
  }
}
void vecadd_seq(float* a, float* b, int n){
  for(int i=0; i<n; i++)
    a[i] += b[i];
}Simplify the control flow

and also promote vectorization.

2. Decide a height parameter H.

3. Apply one of the following:
– Static task elimination
– Code-bloat-free inlining
– Loopification
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Summary of Static Cut-off
First, try to calculate a height-based cut-off condition.
– If it is calculable, determine H and apply one of them:

● Static task elimination      : reduce tasking overheads.
● Code-bloat-free inlining   : + reduce function call overheads.
● Loopification                       : + convert recursion into a loop.

– Otherwise, apply the dynamic cut-off [*]
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n=2
n=1 n=0

n=2
n=3

n=1 n=1 n=0
n=2

n=4

Height

[*] P. Thoman et al. Adaptive granularity control
     in task parallel programs using
     multiversioning. Euro-Par '13, 2013

Lower is powerful, but less likely to be applicable.
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Limitations of Static Cut-off
● The evaluation had shown our static cut-off enhanced 

performance, yet there are room for further tuning to 
achieve best performance.

1. Heuristics-based decision on cut-off threshold does not 
always return the optimal ones.

2. Optimization for serialized tasks can be improved more.
● e.g., combining multiple transformations

3. Dynamic cut-off is not so efficient.
● However, our static cut-off cannot be applied to all.
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Index
0. Short Summary

1. Introduction

2. Static Cut-off and its Limitations

3. Our Proposal: Cut-off with Autotuning
– Autotuning framework

4. Evaluation

5. Conclusion
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Cut-off with Autotuning
● Decide a cut-off strategy using an autotuning way.
● There are three possible elements for tuning:

1. Cut-off thresholds (≒ a cut-off condition)
● Especially for loopification, the cut-off condition has

an impact on cache-blocking effect.

2. Combination of transformations.
● e.g., inlining & parallel + loopification & serial

3. Whether depth or height is used. 

n=1 n=0
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n=1 n=1 n=0

n=2
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n=1 n=0
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n=7

n=2
n=1 n=0
n=2

n=3
n=1 n=1 n=0

n=2
n=4

Height

Depth
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Autotuning Flow

● Input: original code + script to compile & run
● Output: autotuned configuration file

– Our compiler generates an autotuned program
with that file.

● We adopt an autotuning strategy similar to that of 
PetaBricks[*].

Black box for now.

Check availablity of 
each transformation method

Create configurations
for height-based tasks

Choose the optimal one

Create configurations
for depth-based tasks

Script to
compile

& execute

Target
code

(LLVM IR)

Create configurations
for loopifiable tasks

Autotuned
config

Create an optimized version
of the target code

Insert time measurement
functions

Run a script to
measure performance

Try to identify
 a height-based

condition

Try to apply
loopification

Failed

Failed

Succeeded

Succeeded
Various
configs

User's Input OutputAutotuning framework

[*] J. Ansel et al., PetaBricks: A Language and Compiler for
     Algorithmic Choice. PLDI '09, 2009.
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PetaBricks
● PetaBricks[*], proposed by Ansel et al.

is an autotuning  framework for
parallel divide-and-conquer
algorithms.
– It focuses on algorithmic choice.
– e.g., for sorting, we can combine

mergesort, quicksort, insertionsort
together, by switching at each
“conquer” phase. 

● Users need to write multiple versions of the algorithm.
[*] J. Ansel et al., PetaBricks: A Language and Compiler for
     Algorithmic Choice. PLDI '09, 2009.

transform Sort
from In[n]
to Out[n]
{
  rule MergeSort
  to (Out out) from (In in)
  {
    [...]; // do MergeSort
  }
  rule QuickSort
  to (Out out) from (In in)
  {
    [...]; // do QuickSort
  }
  rule InsertionSort
  to (Out out) from (In in)
  {
    [...]; // do InsertionSort
  }
}

Related Work
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Transformed
task1

Basic Idea: Connecting Tasks

● Similar to the approach of PetaBricks, we optimize cut-
off by connecting various tasks with appropriate 
conditions.

– The simplest cut-off is represented as follows:

Original
task

Transformed
task2

Transformed
task3

Condition1 Condition2 Condition3
: switch

Serialized function
(Static task elimination)

Original
task

Cut-off Condition
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Example: Fibonacci
void fib(int n, int* r){
  if(n < 2){
    *r = n;
  }else{
    int a, b;
    spawn fib(n-1, &a);
    spawn fib(n-2, &b);
    sync;
    *r = a + b;
  }
}

First, run the original task
          to ensure parallelism,
then switch to the serialized
          to reduce a overhead.
The leaf is inline-expanded
          for serial performance.
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Serialized
function

Original
task

Twice-inlined
serialized 
function

if n < 11 if n < 4

First, run the original task
          to ensure parallelism,
then switch to the serialized
          to reduce a overhead.
Leaf tasks are inline-expanded
          for serial performance.

void fib(int n, int* r){
  if(n < 2){
    *r = n;
  }else{
    int a, b;
    spawn fib(n-1, &a);
    spawn fib(n-2, &b);
    sync;
    *r = a + b;
  }
}

n=1 n=0

n=2

n=3

n=1 n=1 n=0

n=2

n=4

n=5

n=1 n=0

n=2

n=3

n=1

n=6

n=2

n=4

n=10 n=9

n=11

n=25Run in parallel (11 < n)
(an original task parallel function)

Run in serial (3 < n < 12)
(a normal recursive function)

                       Run in serial (n < 4)
(a recursive function inline-expanded twice)

Example: Fibonacci
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Example: Final Code

Serialized
function

Original
task

Twice-inlined
serialized 
function

if n < 11 if n < 4

void fib(int n, int* r){
  if(n < 11){
    fib2(n, r);
  }else{
    int a, b;
    spawn fib(n-1, &a);
    spawn fib(n-2, &b);
    sync;
    *r = a + b;
  }
}

void fib2(int n, int* r){
  if(n < 4){
    fib3(n, r);
  }else{
    int a, b;
    fib2(n-1, &a);
    fib2(n-2, &b);
    *r = a + b;
  }
}

void fib3(int n, int* r){
  if(n < 2){
    *r = n;
  }else
    [inlined twice];
}
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Search Space for Autotuning
● There are two tuning parameters:

1. Switching conditions

2. Optimizations for each task (             )
● + Optimization parameters (e.g., # of times of inlining)

● The number of patterns are potentially countless.

task

Sometimes not parallelized
e.g., serialized task

Transformed
task1

Original
task

Transformed
task2

Transformed
task3

Condition1 Condition2 Condition3
: switch
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Basic Cut-off Strategy

1. Use height rather than depth if possible.

2. # of task versions is at most 3.

● An original task: no optimization is applied
→ fine-grained & parallel

● A middle task: optimization may be applied
→ fine~coarse-grained & serial

● A leaf task: optimization may be applied
→ coarse-grained & serial

Task2Task1 Task3

Condition1 Condition2

To limit the search space.



40

Three Typical Patterns
● We defined three typical patterns to limit the search 

space.
– Pattern 1: depth-based cut-off

● Target examples: tree traversals
– Pattern 2: height-based cut-off without loopification

● Target examples: fibonacci, nqueens
– Pattern 3: height-based cut-off with loopification

● Target examples: vector addition, matrix multiplication
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Serialized
function

Pattern 1: Depth-based Cut-off
● It is designed for tasks to which it is difficult to apply 

static cut-off.
– e.g., tree traversal programs, unbalanced tree search

Original task

Depth-based 
Condition

Inlined
function

CBF inlined
function

CBF inlining:
code-bloat-free inlining

n=2



46

Height-based 
Condition

Serialized
task

Pattern 2: Height-based Cut-off
● It is designed for tasks to which static cut-off is 

applicable, but loopification is not.
– e.g., fib, nqueens

Inlined
function

Original task Inlined
leaf task

CBF inlined
leaf task

CBF inlined
function

without loopification

Height-based 
Conditionn=2

It preserves recursive call sites.

They completely remove
recursion by inlining H times.
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Pattern 3: Height-based Cut-off
● It is designed for loopifiable tasks.

– e.g., vecadd. matmul, heat2d

with loopification

Inlined
function

Original task Loopified
function

CBF inlined
function

It significantly
affects loop-blocking.

LOOP LOOP

Height-based 
Condition

Height-based 
Condition

LOOP
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Avoid Loss of Parallelism
● More parallelism is better if the performance is the 

same in terms of dynamic load balancing.
● Our autotuning adapt the switching condition 

preserving most parallelism, which can accomplish
99% of the optimal performance measured. 
– In this example, we choose n<2000

even if n<10000 performs slightly
                                                   better.

Cut-off n<2000: 10.1[s]

Cut-off n<10000: 10[s]

void vecadd(float* a, float* b, int n){
  if(n == 1){
    *a += *b;
  }else{
    spawn vecadd(a, b, n/2);
    spawn vecadd(a+n/2, b+n/2, n-n/2);
    sync;
  }
}

Cut-off n<1000: 12.0[s]

Cut-off n<100: 14.0[s]

Cut-off n<20000: 11[s]

Not fastest, though.
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Autotuning: Summary 

● Our autotuning searches for the best combination of 
differently transformed tasks.
– It contains a cut-off concept.

● It employs three patterns to limit the search space.
– Depth-based one
– Height-based ones (w/ & w/o loopification)

Check availablity of 
each transformation method

Create configurations
for height-based tasks

Choose the optimal one

Create configurations
for depth-based tasks

Script to
compile

& execute

Target
code

(LLVM IR)

Create configurations
for loopifiable tasks

Autotuned
config

Create an optimized version
of the target code

Insert time measurement
functions

Run a script to
measure performance

Try to identify
 a height-based

condition

Try to apply
loopification

Failed

Failed

Succeeded

Succeeded Various
configs

User's Input OutputAutotuning framework
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Implementation & Environment
● We implemented it as an optimization pass

on LLVM 3.6.0.

Modified MassiveThreads[*1], a lightweight work-
stealing based task parallel system adopting the child-
first scheduling policy[*2].

● An autotuning driver is written in Python.
● Experiments were done on dual sockets of Intel Xeon 

E5-2699 v3 (Haswell) processors (36 cores in total).
– Use numactl --interleave=all to balance physical 

memory across sockets.
[*1] MassiveThreads https://github.com/massivethreads/massivethreads
[*2] Mohr et al., Lazy Task Creation: A Technique for Increasing the Granularity of
        Parallel Programs, LFP '90, 1990
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Dynamic Cut-off Autotuning Pattern

fib ✔ 2. Height-based without loopification

nqueens ✔ 2. Height-based without loopification

nbody ✔ 2. Height-based without loopification

vecadd ✔ 3. Height-based with loopification

heat2d ✔ 3. Height-based with loopification

heat3d ✔ 3. Height-based with loopification

gaussian ✔ 3. Height-based with loopification

matmul ✔ 3. Height-based with loopification

treeadd ✔ 1. Depth-based

treesum ✔ 1. Depth-based

uts ✔ 1. Depth-based

Benchmarks
● 11 benchmarks were prepared for evaluation.

– All are divide-until-trivial task parallel programs.

・fib
・nqueens
・nbody
・vecadd
・heat2d

・heat3d
・gaussian
・matmul
・treeadd
・treesum
・uts

Static cut-off is not
applicable to them.
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0.1

10

1000

original
dynamic
static
autotuning

Multi-threaded Performance

● Optimization including dynamic (dynamic cut-off[*]) 
improved performance over original (no cut-off)

● autotuning (proposal) was faster than dynamic  and 
static (static cut-off) overall.
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better

[*] P. Thoman et al. Adaptive granularity control in task parallel programs using  
     multiversioning. Euro-Par '13, 2013

36 workers.
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vs. Loop Parallel Programs
● autotuning  (proposed

autotuned one) was 
– comparable to

polly (Polly) and
omp (OpenMP)

– defeated by omp_optimized
(hand-optimized OpenMP).

● Hand-tuned OpenMP can
employ flexible cache-blocking.

● div-and-conq divides the axis
only by a constant integer.

0
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autotuning
static
omp
omp_optimized
polly

Higher is 
better
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Conclusion

● We developed an autotuning framework for
divide-until-trivial task parallel programs.

● It achieved significant speedup over the original
naïve task parallel programs.

Check availablity of 
each transformation method

Create configurations
for height-based tasks

Choose the optimal one

Create configurations
for depth-based tasks

Script to
compile

& execute

Target
code

(LLVM IR)

Create configurations
for loopifiable tasks

Autotuned
config

Create an optimized version
of the target code

Insert time measurement
functions

Run a script to
measure performance

Try to identify
 a height-based

condition

Try to apply
loopification

Failed

Failed

Succeeded

Succeeded Various
configs

User's Input OutputAutotuning framework


