
1

Autotuning of a Cut-off
for Task Parallel Programs

Shintaro Iwasaki, Kenjiro Taura
Graduate School of Information Science and Technology

The University of Tokyo

September 22, 2016
 @ ATMG '16 (special session in MCSoC '16)

2

Short Summary
● We focus on a fork-join task parallel programming

model.
● “Cut-off” is an optimization technique for task parallel

programs to control granularity.
● We had developed a series of compiler optimization

techniques for automatic cut-off (“static cut-off”[*])

Keyword: divide-and-conquer

[*] Iwasaki et al., A Static Cut-off for Task Parallel Programs, PACT '16, 2016.

3

Short Summary
● We focus on a fork-join task parallel programming

model.
● “Cut-off” is an optimization technique for task parallel

programs to control granularity.
● We had developed a series of compiler optimization

techniques for automatic cut-off (“static cut-off”[*])
● This study proposes an automatic cut-off technique with

an autotuning method to obtain the best combination
of these techniques for higher performance.

Keyword: divide-and-conquer

[*] Iwasaki et al., A Static Cut-off for Task Parallel Programs, PACT '16, 2016.

4

Index
0. Short Summary

1. Introduction

2. Static Cut-off and its Limitations

3. Our Proposal: Cut-off with Autotuning

4. Evaluation

5. Conclusion

5

Index
0. Short Summary

1. Introduction
– What is task parallelism?
– What is a “cut-off”?

2. Static Cut-off and its Limitations

3. Our Proposal: Cut-off with Autotuning

4. Evaluation

5. Conclusion

6

Importance of Multi-threading
● The number of CPU cores gets larger and larger.

● Multi-threading is essential to exploiting modern
processors.

→ A task parallel model is one of the most promising
 parallel programming models.

Intel Xeon Phi (Knights Corner) is a typical example:
it has 60 cores, supporting over 200 hardware threads.
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html

We didn't use it for evaluation, though.

7

Task Parallel Programming Models
● Task parallelism is a popular parallel programming model.

– Adopted by many famous systems/libraries:
● e.g., OpenMP (since ver. 3.0), Cilk / Cilk Plus, Intel TBB …

● It has two major features:
– Dynamic load balancing
– Suitability for divide-and-conquer algorithms

● In this talk, we focus on a “fork-join task parallel model.”

Intel Cilk Plus

Cilk

Intel TBB
* Each image is from their official pages.

8

Fork-join Task Parallelism
● We use program examples given in Cilk syntax.
● Two basic keywords are provided to express

task parallelism: spawn and sync.
– Spawn (≒ fork) : create a task as a child, which will be

executed concurrently.
– Sync (≒ join) : wait all tasks created (or spawned) by itself.

void vecadd(float* a, float* b, int n){
 for(int i = 0; i < n; i++)
 a[i] += b[i];
}

void vecadd(float* a, float* b, int n){
 if(n == 1){
 *a += *b;
 }else{
 spawn vecadd(a, b, n/2);
 spawn vecadd(a+n/2, b+n/2, n-n/2);
 sync;
 }
}Same meaning.

9

Fork-join Task Parallelism
● We use program examples given in Cilk syntax.
● Two basic keywords are provided to express

task parallelism: spawn and sync.
– Spawn (≒ fork) : create a task as a child, which will be

executed concurrently.
– Sync (≒ join) : wait all tasks created (or spawned) by itself.

● The main target is a divide-
and-conquer algorithm.
– e.g., sort, FFT, FMM, AMR,

 cache-oblivious GEMM

void vecadd(float* a, float* b, int n){
 if(n == 1){
 *a += *b;
 }else{
 spawn vecadd(a, b, n/2);
 spawn vecadd(a+n/2, b+n/2, n-n/2);
 sync;
 }
}

10

Overheads of Task Parallel Program
● In general, task parallel runtime is designed to handle

fine-grained parallelism efficiently.
● However, extreme fine granularity imposes large

overheads, degrading the performance.
void vecadd(float* a, float* b, int n){
 if(n == 1){
 *a += *b;
 }else{
 spawn vecadd(a, b, n/2);
 spawn vecadd(a+n/2, b+n/2, n-n/2);
 sync;
 }
}

This vecadd is a too fine-grained task;
one leaf task only calculates *a += *b.

11

Overheads of Task Parallel Program
● In general, task parallel runtime is designed to handle

fine-grained parallelism efficiently.
● However, extreme fine granularity imposes large

overheads, degrading the performance.

● Cut-off has been known as an effective optimization
technique.

void vecadd(float* a, float* b, int n){
 if(n == 1){
 *a += *b;
 }else{
 spawn vecadd(a, b, n/2);
 spawn vecadd(a+n/2, b+n/2, n-n/2);
 sync;
 }
}

This vecadd is a too fine-grained task;
one leaf task only calculates *a += *b.

12

Cut-off: An Optimization Technique
● Cut-off is a technique to reduce a tasking overhead by

stop creating tasks in a certain condition.
– i.e., execute a task in serial in that condition.

● Programmers commonly
apply it manually.

void vecadd(float* a, float* b, int n){
 if(n == 1){
 *a += *b;
 }else{
 spawn vecadd(a, b, n/2);
 spawn vecadd(a+n/2, b+n/2, n-n/2);
 sync;
 }
}

void vecadd(float* a, float* b, int n){
 if(1<= n && n <=1000){
 vecadd_seq(a, b, n);
 }else{
 spawn vecadd(a, b, n/2);
 spawn vecadd(a+n/2, b+n/2, n-n/2);
 sync;
 }
}
//Sequential version of vecadd
void vecadd_seq(float* a, float* b, int n){
 if(n == 1){
 *a += *b;
 }else{
 /*spawn*/vecadd_seq(a, b, n/2);
 /*spawn*/vecadd_seq(a+n/2, b+n/2, n-n/2);
 /*sync;*/
 }
}

Cut-off A cut-off condition

Call a sequential vecadd
if 1 <= n && n <= 1000

13

Cut-off + Further Optimizations

● In addition to reducing tasking overheads, further
transformations are applicable to serialized tasks
in some cases.

void vecadd(float* a, float* b, int n){
 if(1 <= n && n <= 4096){
 vecadd_seq(a, b, n);
 }else{
 spawn vecadd(a, b, n/2);
 spawn vecadd(a+n/2, b+n/2, n-n/2);
 sync;
 }
}
void vecadd_seq(float* a, float* b, int n){
 for(int i = 0; i < n; i++)
 a[i] += b[i];
}

void vecadd(float* a, float* b, int n){
 if(n == 1){
 *a += *b;
 }else{
 spawn vecadd(a, b, n/2);
 spawn vecadd(a+n/2, b+n/2, n-n/2);
 sync;
 }
}

2. Transformation

1. Cut-off

vecadd_seq() is loopified.

14

Dynamic Cut-off
● Most previous studies on automatic cut-off [*1,*2,*3]

focused on adaptive cut-off (dynamic cut-off)
– Dynamic cut-off is a technique not creating tasks when

runtime information tells task creation is not beneficial.
● Runtime information:

a total number of tasks, task queue length, execution
time, depth of tasks, frequency of work stealing etc...

● Problems:
Cost to evaluate a cut-off condition is large,
Optimizations after the cut-off are less applicable.

[*1] Bi et al. An Adaptive Task Granularity Based Scheduling for Task-centric
 Parallelism, HPCC '14, 2014
[*2] Duran et al. An Adaptive Cut-offfor Task Parallelism, SC '08, 2008
[*3] Thoman et al. Adaptive Granularity Control in Task Parallel Programs
 Using Multiversioning, Euro-Par'13, 2013

Related Work

Dynamic cut-off advantage:
wider applicable range.

15

Our Goal: Automatic Cut-off
● Our goal is developing automatic cut-off including

further optimizations automatically for
task parallel programs without any manual cut-off.

void vecadd(float* a, float* b, int n){
 if(1 <= n && n <= 4096){
 vecadd_seq(a, b, n);
 }else{
 spawn vecadd(a, b, n/2);
 spawn vecadd(a+n/2, b+n/2, n-n/2);
 sync;
 }
}
void vecadd_seq(float* a, float* b, int n){
 // Vectorize the following for-loop,
 // since task keywords implicitly reveal
 // each iteration is independent.
 for(int i = 0; i < n; i++)
 a[i] += b[i];
}

16

Our Goal: Automatic Cut-off
● Our goal is developing automatic cut-off including

further optimizations automatically for
task parallel programs without any manual cut-off.

– Compiler optimizations
for simple loops have
been well developed.

● Loop blocking, unrolling
interchange, etc...

→ Develop optimizations
for divide-until-trivial tasks.

void vecadd(float* a, float* b, int n){
 if(1 <= n && n <= 4096){
 vecadd_seq(a, b, n);
 }else{
 spawn vecadd(a, b, n/2);
 spawn vecadd(a+n/2, b+n/2, n-n/2);
 sync;
 }
}
void vecadd_seq(float* a, float* b, int n){
 // Vectorize the following for-loop,
 // since task keywords implicitly reveal
 // each iteration is independent.
 for(int i = 0; i < n; i++)
 a[i] += b[i];
}

Let's say divide-until-trivial task parallel programs.

17

Index
0. Short Summary

1. Introduction

2. Static Cut-off and its Limitations
– Our previous work: static cut-off
– Limitations

3. Our Proposal: Cut-off with Autotuning

4. Evaluation

5. Conclusion

18

What we've proposed: Static Cut-off
● Static cut-off is an automatic cut-off method including

a series of compile-time optimization techniques for
task parallel programs.

● It tries to aggregate tasks near leaves.

+ Low risk of serious loss of parallelism.

+ Chance to apply powerful compiler optimizations
 after cut-off.

We proposed it
in PACT '16 [*].

[*] Iwasaki et al., A Static Cut-off for Task Parallel Programs, PACT '16, 2016.

Encircled by

n=1 n=0

n=2

n=3

n=1 n=1 n=0

n=2

n=4

n=5

n=1 n=0

n=2

n=3

n=1

n=6

n=7

n=2

n=1 n=0

n=2

n=3

n=1 n=1 n=0

n=2

n=4

19

What we've proposed: Static Cut-off
● Static cut-off is an automatic cut-off method including

a series of compile-time optimization techniques for
task parallel programs.

● It tries to aggregate tasks near leaves.

+ Low risk of serious loss of parallelism.

+ Chance to apply powerful compiler optimizations
 after cut-off.

We proposed it
in PACT '16 [*].

[*] Iwasaki et al., A Static Cut-off for Task Parallel Programs, PACT '16, 2016.

Encircled by

n=1 n=0

n=2

n=3

n=1 n=1 n=0

n=2

n=4

n=5

n=1 n=0

n=2

n=3

n=1

n=6

n=7

n=2

n=1 n=0

n=2

n=3

n=1 n=1 n=0

n=2

n=4

Key idea: use a height instead of a depth.

20

Depth/Height of Tasks
● Consider a task tree of fib(16) below.

fib calculates

void fib(int n, int* r){
 if(n < 2){
 *r = n;
 }else{
 int a, b;
 spawn fib(n-1, &a);
 spawn fib(n-2, &b);
 sync;
 *r = a + b;
 }
}

Fn =
n if n < 2
Fn-1 + Fn-2 otherwise

n=1 n=0
n=2

n=3
n=1 n=1 n=0

n=2
n=4

n=5

n=1 n=0
n=2

n=3
n=1

n=6

n=7

n=2
n=1 n=0

n=2
n=3

n=1 n=1 n=0
n=2

n=4

n=2 n=9

n=14 n=15
n=16(root)

21

Depth/Height of Tasks
● Consider a task tree of fib(16) below.

fib calculates

– Depth is easy to obtain.
● e.g., increment a variable from the root.

n=1 n=0
n=2

n=3
n=1 n=1 n=0

n=2
n=4

n=5

n=1 n=0
n=2

n=3
n=1

n=6

n=7

n=2
n=1 n=0

n=2
n=3

n=1 n=1 n=0
n=2

n=4

n=2 n=9

n=14 n=15
n=16(root)

Depth

void fib(int n, int* r){
 if(n < 2){
 *r = n;
 }else{
 int a, b;
 spawn fib(n-1, &a);
 spawn fib(n-2, &b);
 sync;
 *r = a + b;
 }
}

Fn =
n if n < 2
Fn-1 + Fn-2 otherwise

Cut-off in ”depth > 6”

22

Depth/Height of Tasks
● Consider a task tree of fib(16) below.

fib calculates

– Height is difficult to calculate, but it is
suitable for a cut-off condition.

n=1 n=0
n=2

n=3
n=1 n=1 n=0

n=2
n=4

n=5

n=1 n=0
n=2

n=3
n=1

n=6

n=7

n=2
n=1 n=0

n=2
n=3

n=1 n=1 n=0
n=2

n=4

n=2 n=9

n=14 n=15
n=16(root)

Depth

Height

void fib(int n, int* r){
 if(n < 2){
 *r = n;
 }else{
 int a, b;
 spawn fib(n-1, &a);
 spawn fib(n-2, &b);
 sync;
 *r = a + b;
 }
}

Fn =
n if n < 2
Fn-1 + Fn-2 otherwise

Cut-off in ”height < 3”

Cut-off in ”depth > 6”

23

Static Cut-off Flow
1. Try to calculate a height-based cut-off condition.
– If the height-based cut-off condition is calculable ...

– Otherwise...

n=1 n=0
n=2

n=3
n=1 n=1 n=0

n=2
n=4

n=5

n=1 n=0
n=2

n=3
n=1

n=6

n=7

n=2
n=1 n=0

n=2
n=3

n=1 n=1 n=0
n=2

n=4

Height

2. Decide a height parameter H.
3. Apply one of the following:

● Static task elimination
● Code-bloat-free inlining
● Loopification

2. Apply the dynamic cut-off [*]

Show the examples later.

[*] P. Thoman et al. Adaptive granularity control
 in task parallel programs using
 multiversioning. Euro-Par '13, 2013

24

Examples of Static Cut-off

void vecadd(float* a, float* b, int n){
 if(n == 1){
 *a += *b;
 }else{
 spawn vecadd(a, b, n/2);
 spawn vecadd(a+n/2, b+n/2, n-n/2);
 sync;
 }
}

void vecadd(float* a, float* b, int n){
 if(1 <= n && n <= 1024){
 vecadd_seq(a, b, n);
 }else{
 spawn vecadd(a, b, n/2);
 spawn vecadd(a+n/2, b+n/2, n-n/2);
 sync;
 }
}
void vecadd_seq(float* a, float* b, int n){
 ???
}

H = 10 in this case.

Use heuristics.2. Decide a height parameter H.

3. Apply one of the following:
– Static task elimination
– Code-bloat-free inlining
– Loopification

25

Examples of Static Cut-off

void vecadd(float* a, float* b, int n){
 if(n == 1){
 *a += *b;
 }else{
 spawn vecadd(a, b, n/2);
 spawn vecadd(a+n/2, b+n/2, n-n/2);
 sync;
 }
}

void vecadd(float* a, float* b, int n){
 if(1 <= n && n <= 1024){
 vecadd_seq(a, b ,n);
 }else{
 spawn vecadd(a, b, n/2);
 spawn vecadd(a+n/2, b+n/2, n-n/2);
 sync;
 }
}
void vecadd_seq(float* a, float* b, int n){
 if(n == 1){
 *a += *b;
 }else{
 /*spawn*/vecadd_seq(a, b, n/2);
 /*spawn*/vecadd_seq(a+n/2, b+n/2, n-n/2);
 /*sync;*/
 }
}

Just remove spawn & sync
to reduce the overheads.

2. Decide a height parameter H.

3. Apply one of the following:
– Static task elimination
– Code-bloat-free inlining
– Loopification

26

Examples of Static Cut-off

void vecadd(float* a, float* b, int n){
 if(n == 1){
 *a += *b;
 }else{
 spawn vecadd(a, b, n/2);
 spawn vecadd(a+n/2, b+n/2, n-n/2);
 sync;
 }
}

void vecadd(float* a, float* b, int n){
 if(1 <= n && n <= 1024){
 vecadd_seq(a, b ,n);
 }else{
 spawn vecadd(a, b, n/2);
 spawn vecadd(a+n/2, b+n/2, n-n/2);
 sync;
 }
}
void vecadd_seq(float* a, float* b, int n){
 if(n == 1){
 *a += *b;
 }else{
 for(int i = 0; i < 2; i++){
 float *a2, *b2; int n2;
 switch(i){
 case 0:
 a2=a; b2=b ; n2=n/2; break;
 case 1:
 a2=a+n/2; b2=b+n/2; n2=n-n/2; break;
 }
 //Inline 10 times here.
 vecadd_seq(a2,b2,n2);
 }
 }
}

Apply inlining to reduce
function call overheads

w/o exponential code growth.

2. Decide a height parameter H.

3. Apply one of the following:
– Static task elimination
– Code-bloat-free inlining
– Loopification

27

Examples of Static Cut-off

void vecadd(float* a, float* b, int n){
 if(n == 1){
 *a += *b;
 }else{
 spawn vecadd(a, b, n/2);
 spawn vecadd(a+n/2, b+n/2, n-n/2);
 sync;
 }
}

void vecadd(float* a, float* b, int n){
 if(1 <= n && n <= 1024){
 vecadd_seq(a, b ,n);
 }else{
 spawn vecadd(a, b, n/2);
 spawn vecadd(a+n/2, b+n/2, n-n/2);
 sync;
 }
}
void vecadd_seq(float* a, float* b, int n){
 for(int i=0; i<n; i++)
 a[i] += b[i];
}Simplify the control flow

and also promote vectorization.

2. Decide a height parameter H.

3. Apply one of the following:
– Static task elimination
– Code-bloat-free inlining
– Loopification

28

Summary of Static Cut-off
First, try to calculate a height-based cut-off condition.
– If it is calculable, determine H and apply one of them:

● Static task elimination : reduce tasking overheads.
● Code-bloat-free inlining : + reduce function call overheads.
● Loopification : + convert recursion into a loop.

– Otherwise, apply the dynamic cut-off [*]

n=1 n=0
n=2

n=3
n=1 n=1 n=0

n=2
n=4

n=5

n=1 n=0
n=2

n=3
n=1

n=6

n=7

n=2
n=1 n=0

n=2
n=3

n=1 n=1 n=0
n=2

n=4

Height

[*] P. Thoman et al. Adaptive granularity control
 in task parallel programs using
 multiversioning. Euro-Par '13, 2013

Lower is powerful, but less likely to be applicable.

29

Limitations of Static Cut-off
● The evaluation had shown our static cut-off enhanced

performance, yet there are room for further tuning to
achieve best performance.

1. Heuristics-based decision on cut-off threshold does not
always return the optimal ones.

2. Optimization for serialized tasks can be improved more.
● e.g., combining multiple transformations

3. Dynamic cut-off is not so efficient.
● However, our static cut-off cannot be applied to all.

30

Index
0. Short Summary

1. Introduction

2. Static Cut-off and its Limitations

3. Our Proposal: Cut-off with Autotuning
– Autotuning framework

4. Evaluation

5. Conclusion

31

Cut-off with Autotuning
● Decide a cut-off strategy using an autotuning way.
● There are three possible elements for tuning:

1. Cut-off thresholds (≒ a cut-off condition)
● Especially for loopification, the cut-off condition has

an impact on cache-blocking effect.

2. Combination of transformations.
● e.g., inlining & parallel + loopification & serial

3. Whether depth or height is used.

n=1 n=0
n=2

n=3
n=1 n=1 n=0

n=2
n=4

n=5

n=1 n=0
n=2

n=3
n=1

n=6

n=7

n=2
n=1 n=0
n=2

n=3
n=1 n=1 n=0

n=2
n=4

Height

Depth

32

Autotuning Flow

● Input: original code + script to compile & run
● Output: autotuned configuration file

– Our compiler generates an autotuned program
with that file.

● We adopt an autotuning strategy similar to that of
PetaBricks[*].

Black box for now.

Check availablity of
each transformation method

Create configurations
for height-based tasks

Choose the optimal one

Create configurations
for depth-based tasks

Script to
compile

& execute

Target
code

(LLVM IR)

Create configurations
for loopifiable tasks

Autotuned
config

Create an optimized version
of the target code

Insert time measurement
functions

Run a script to
measure performance

Try to identify
 a height-based

condition

Try to apply
loopification

Failed

Failed

Succeeded

Succeeded
Various
configs

User's Input OutputAutotuning framework

[*] J. Ansel et al., PetaBricks: A Language and Compiler for
 Algorithmic Choice. PLDI '09, 2009.

33

PetaBricks
● PetaBricks[*], proposed by Ansel et al.

is an autotuning framework for
parallel divide-and-conquer
algorithms.
– It focuses on algorithmic choice.
– e.g., for sorting, we can combine

mergesort, quicksort, insertionsort
together, by switching at each
“conquer” phase.

● Users need to write multiple versions of the algorithm.
[*] J. Ansel et al., PetaBricks: A Language and Compiler for
 Algorithmic Choice. PLDI '09, 2009.

transform Sort
from In[n]
to Out[n]
{
 rule MergeSort
 to (Out out) from (In in)
 {
 [...]; // do MergeSort
 }
 rule QuickSort
 to (Out out) from (In in)
 {
 [...]; // do QuickSort
 }
 rule InsertionSort
 to (Out out) from (In in)
 {
 [...]; // do InsertionSort
 }
}

Related Work

34

Transformed
task1

Basic Idea: Connecting Tasks

● Similar to the approach of PetaBricks, we optimize cut-
off by connecting various tasks with appropriate
conditions.

– The simplest cut-off is represented as follows:

Original
task

Transformed
task2

Transformed
task3

Condition1 Condition2 Condition3
: switch

Serialized function
(Static task elimination)

Original
task

Cut-off Condition

35

Example: Fibonacci
void fib(int n, int* r){
 if(n < 2){
 *r = n;
 }else{
 int a, b;
 spawn fib(n-1, &a);
 spawn fib(n-2, &b);
 sync;
 *r = a + b;
 }
}

First, run the original task
 to ensure parallelism,
then switch to the serialized
 to reduce a overhead.
The leaf is inline-expanded
 for serial performance.

36

Serialized
function

Original
task

Twice-inlined
serialized
function

if n < 11 if n < 4

First, run the original task
 to ensure parallelism,
then switch to the serialized
 to reduce a overhead.
Leaf tasks are inline-expanded
 for serial performance.

void fib(int n, int* r){
 if(n < 2){
 *r = n;
 }else{
 int a, b;
 spawn fib(n-1, &a);
 spawn fib(n-2, &b);
 sync;
 *r = a + b;
 }
}

n=1 n=0

n=2

n=3

n=1 n=1 n=0

n=2

n=4

n=5

n=1 n=0

n=2

n=3

n=1

n=6

n=2

n=4

n=10 n=9

n=11

n=25Run in parallel (11 < n)
(an original task parallel function)

Run in serial (3 < n < 12)
(a normal recursive function)

 Run in serial (n < 4)
(a recursive function inline-expanded twice)

Example: Fibonacci

37

Example: Final Code

Serialized
function

Original
task

Twice-inlined
serialized
function

if n < 11 if n < 4

void fib(int n, int* r){
 if(n < 11){
 fib2(n, r);
 }else{
 int a, b;
 spawn fib(n-1, &a);
 spawn fib(n-2, &b);
 sync;
 *r = a + b;
 }
}

void fib2(int n, int* r){
 if(n < 4){
 fib3(n, r);
 }else{
 int a, b;
 fib2(n-1, &a);
 fib2(n-2, &b);
 *r = a + b;
 }
}

void fib3(int n, int* r){
 if(n < 2){
 *r = n;
 }else
 [inlined twice];
}

38

Search Space for Autotuning
● There are two tuning parameters:

1. Switching conditions

2. Optimizations for each task ()
● + Optimization parameters (e.g., # of times of inlining)

● The number of patterns are potentially countless.

task

Sometimes not parallelized
e.g., serialized task

Transformed
task1

Original
task

Transformed
task2

Transformed
task3

Condition1 Condition2 Condition3
: switch

39

Basic Cut-off Strategy

1. Use height rather than depth if possible.

2. # of task versions is at most 3.

● An original task: no optimization is applied
→ fine-grained & parallel

● A middle task: optimization may be applied
→ fine~coarse-grained & serial

● A leaf task: optimization may be applied
→ coarse-grained & serial

Task2Task1 Task3

Condition1 Condition2

To limit the search space.

40

Three Typical Patterns
● We defined three typical patterns to limit the search

space.
– Pattern 1: depth-based cut-off

● Target examples: tree traversals
– Pattern 2: height-based cut-off without loopification

● Target examples: fibonacci, nqueens
– Pattern 3: height-based cut-off with loopification

● Target examples: vector addition, matrix multiplication

41

Three Typical Patterns
● We defined three typical patterns to limit the search

space.
– Pattern 1: depth-based cut-off

● Target examples: tree traversals
– Pattern 2: height-based cut-off without loopification

● Target examples: fibonacci, nqueens
– Pattern 3: height-based cut-off with loopification

● Target examples: vector addition, matrix multiplication

42

Three Typical Patterns
● We defined three typical patterns to limit the search

space.
– Pattern 1: depth-based cut-off

● Target examples: tree traversals
– Pattern 2: height-based cut-off without loopification

● Target examples: fibonacci, nqueens
– Pattern 3: height-based cut-off with loopification

● Target examples: vector addition, matrix multiplication

43

Three Typical Patterns
● We defined three typical patterns to limit the search

space.
– Pattern 1: depth-based cut-off

● Target examples: tree traversals
– Pattern 2: height-based cut-off without loopification

● Target examples: fibonacci, nqueens
– Pattern 3: height-based cut-off with loopification

● Target examples: vector addition, matrix multiplication

44

Three Typical Patterns
● We defined three typical patterns to limit the search

space.
– Pattern 1: depth-based cut-off

● Target examples: tree traversals
– Pattern 2: height-based cut-off without loopification

● Target examples: fibonacci, nqueens
– Pattern 3: height-based cut-off with loopification

● Target examples: vector addition, matrix multiplication

45

Serialized
function

Pattern 1: Depth-based Cut-off
● It is designed for tasks to which it is difficult to apply

static cut-off.
– e.g., tree traversal programs, unbalanced tree search

Original task

Depth-based
Condition

Inlined
function

CBF inlined
function

CBF inlining:
code-bloat-free inlining

n=2

46

Height-based
Condition

Serialized
task

Pattern 2: Height-based Cut-off
● It is designed for tasks to which static cut-off is

applicable, but loopification is not.
– e.g., fib, nqueens

Inlined
function

Original task Inlined
leaf task

CBF inlined
leaf task

CBF inlined
function

without loopification

Height-based
Conditionn=2

It preserves recursive call sites.

They completely remove
recursion by inlining H times.

47

Pattern 3: Height-based Cut-off
● It is designed for loopifiable tasks.

– e.g., vecadd. matmul, heat2d

with loopification

Inlined
function

Original task Loopified
function

CBF inlined
function

It significantly
affects loop-blocking.

LOOP LOOP

Height-based
Condition

Height-based
Condition

LOOP

48

Avoid Loss of Parallelism
● More parallelism is better if the performance is the

same in terms of dynamic load balancing.
● Our autotuning adapt the switching condition

preserving most parallelism, which can accomplish
99% of the optimal performance measured.
– In this example, we choose n<2000

even if n<10000 performs slightly
 better.

Cut-off n<2000: 10.1[s]

Cut-off n<10000: 10[s]

void vecadd(float* a, float* b, int n){
 if(n == 1){
 *a += *b;
 }else{
 spawn vecadd(a, b, n/2);
 spawn vecadd(a+n/2, b+n/2, n-n/2);
 sync;
 }
}

Cut-off n<1000: 12.0[s]

Cut-off n<100: 14.0[s]

Cut-off n<20000: 11[s]

Not fastest, though.

49

Autotuning: Summary

● Our autotuning searches for the best combination of
differently transformed tasks.
– It contains a cut-off concept.

● It employs three patterns to limit the search space.
– Depth-based one
– Height-based ones (w/ & w/o loopification)

Check availablity of
each transformation method

Create configurations
for height-based tasks

Choose the optimal one

Create configurations
for depth-based tasks

Script to
compile

& execute

Target
code

(LLVM IR)

Create configurations
for loopifiable tasks

Autotuned
config

Create an optimized version
of the target code

Insert time measurement
functions

Run a script to
measure performance

Try to identify
 a height-based

condition

Try to apply
loopification

Failed

Failed

Succeeded

Succeeded Various
configs

User's Input OutputAutotuning framework

50

Index
0. Short Summary

1. Introduction

2. Static Cut-off and its Limitations

3. Our Proposal: Cut-off with Autotuning

4. Evaluation
– Benchmarks & Environment
– Performance Evaluation

5. Conclusion

51

Implementation & Environment
● We implemented it as an optimization pass

on LLVM 3.6.0.

Modified MassiveThreads[*1], a lightweight work-
stealing based task parallel system adopting the child-
first scheduling policy[*2].

● An autotuning driver is written in Python.
● Experiments were done on dual sockets of Intel Xeon

E5-2699 v3 (Haswell) processors (36 cores in total).
– Use numactl --interleave=all to balance physical

memory across sockets.
[*1] MassiveThreads https://github.com/massivethreads/massivethreads
[*2] Mohr et al., Lazy Task Creation: A Technique for Increasing the Granularity of
 Parallel Programs, LFP '90, 1990

52

Dynamic Cut-off Autotuning Pattern

fib ✔ 2. Height-based without loopification

nqueens ✔ 2. Height-based without loopification

nbody ✔ 2. Height-based without loopification

vecadd ✔ 3. Height-based with loopification

heat2d ✔ 3. Height-based with loopification

heat3d ✔ 3. Height-based with loopification

gaussian ✔ 3. Height-based with loopification

matmul ✔ 3. Height-based with loopification

treeadd ✔ 1. Depth-based

treesum ✔ 1. Depth-based

uts ✔ 1. Depth-based

Benchmarks
● 11 benchmarks were prepared for evaluation.

– All are divide-until-trivial task parallel programs.

・fib
・nqueens
・nbody
・vecadd
・heat2d

・heat3d
・gaussian
・matmul
・treeadd
・treesum
・uts

Static cut-off is not
applicable to them.

53

0.1

10

1000

original
dynamic
static
autotuning

Multi-threaded Performance

● Optimization including dynamic (dynamic cut-off[*])
improved performance over original (no cut-off)

● autotuning (proposal) was faster than dynamic and
static (static cut-off) overall.

Re
la

tiv
e

Pe
rfo

rm
an

ce
(o

rig
in

al
 =

 1
) Higher is

better

[*] P. Thoman et al. Adaptive granularity control in task parallel programs using
 multiversioning. Euro-Par '13, 2013

36 workers.

54

vs. Loop Parallel Programs
● autotuning (proposed

autotuned one) was
– comparable to

polly (Polly) and
omp (OpenMP)

– defeated by omp_optimized
(hand-optimized OpenMP).

● Hand-tuned OpenMP can
employ flexible cache-blocking.

● div-and-conq divides the axis
only by a constant integer.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

Re
la

tiv
e

Pe
rfo

rm
an

ce
(a

ut
ot

un
in

g
=

1)

autotuning
static
omp
omp_optimized
polly

Higher is
better

55

Index
0. Short Summary

1. Introduction

2. Static Cut-off and its Limitations

3. Our Proposal: Cut-off with Autotuning

4. Evaluation

5. Conclusion

56

Conclusion

● We developed an autotuning framework for
divide-until-trivial task parallel programs.

● It achieved significant speedup over the original
naïve task parallel programs.

Check availablity of
each transformation method

Create configurations
for height-based tasks

Choose the optimal one

Create configurations
for depth-based tasks

Script to
compile

& execute

Target
code

(LLVM IR)

Create configurations
for loopifiable tasks

Autotuned
config

Create an optimized version
of the target code

Insert time measurement
functions

Run a script to
measure performance

Try to identify
 a height-based

condition

Try to apply
loopification

Failed

Failed

Succeeded

Succeeded Various
configs

User's Input OutputAutotuning framework

