Autotuning of a Cut-off
for Task Parallel Programs

Shintaro lwasaki, Kenjiro Taura
Graduate School of Information Science and Technology
The University of Tokyo

September 22, 2016
@ ATMG'16 (special session in MCSoC '16)

(¥ THE UNIVERSITY OF TOKYO

Short Summary

« We focus on a fork-join task parallel programming
model. :i Keyword: divide-and-conquer j

« “Cut-off” is an optimization technique for task parallel
programs to control granularity.

« We had developed a series of compiler optimization
techniques for automatic cut-off (“static cut-off"[*])

2
C’ THE UNIVERSITY OF TOKYO [*] lwasaki et al., A Static Cut-off for Task Parallel Programs, PACT '16, 2016.

Short Summary

« We focus on a fork-join task parallel programming
model. :i Keyword: divide-and-conquer j

« “Cut-off” is an optimization technique for task parallel
programs to control granularity.

« We had developed a series of compiler optimization
techniques for automatic cut-off (“static cut-off"[*])

« This study proposes an automatic cut-off technique with
an autotuning method to obtain the best combination
of these techniques for higher performance.

3
C’ THE UNIVERSITY OF TOKYO [*] lwasaki et al., A Static Cut-off for Task Parallel Programs, PACT '16, 2016.

Index

0. Short Summary

1. Introduction

2. Static Cut-off and its Limitations

3. Our Proposal: Cut-off with Autotuning
4. Evaluation

5. Conclusion

(¥ THE UNIVERSITY OF TOKYO

Index

1. Introduction

- What is task parallelism?
- What is a “cut-off”?

(f¥ THE UNIVERSITY OF TOKYO

Importance of Multi-threading

« The number of CPU cores gets larger and larger.

Intel Xeon Phi (Knights Corner) is a typical example:

it has 60 cores, supporting over 200 hardware threads.
http://www.intel.com/content/www/us/en/processors/xeon/xeon-phi-detail.html

We didn't use it for evaluation, thoug@

« Multi-threading is essential to exploiting modern
processors.

— A task parallel model is one of the most promising
parallel programming models.

(f¥ THE UNIVERSITY OF TOKYO

Task Parallel Programming Models

 Task parallelism is a popular parallel programming model.

- Adopted by many famous systems/libraries:
« e.g., OpenMP (since ver. 3.0), Cilk / Cilk Plus, Intel TBB --

Intel Cilk Plus [v
OpenMP *‘e PR
ilk \ |
P57
« |t has two major features: i o
Intel TBB
* Each image is from their official pages.

- Dynamic load balancing

- Suitability for divide-and-conquer algorithms

* In this talk, we focus on a “fork-join task parallel model.”

7
(f¥ THE UNIVERSITY OF TOKYO

Fork-join Task Parallelism

« We use program examples given in Cilk syntax.

« Two basic keywords are provided to express
task parallelism: spawn and sync.

- Spawn (= fork) : create a task as a child, which will be
executed concurrently.

- Sync (= join) : wait all tasks created (or spawned) by itself.

void vecadd(float* a, float* b, int n){
if(n == 1){
*a += *Db;
telse{
spawn vecadd(a, b, n/2);
spawn vecadd(a+n/2, b+n/2, n-n/2);
sSync;

void vecadd(float* a, float* b, int n){
for(int 1 = 0; i < n; it++)
ali] += b[il;
3

[Same meaning. J

(f¥ THE UNIVERSITY OF TOKYO

Fork-join Task Parallelism

« We use program examples given in Cilk syntax.

« Two basic keywords are provided to express
task parallelism: spawn and sync.

- Spawn (= fork) : create a task as a child, which will be
executed concurrently.

- Sync (= join) : wait all tasks created (or spawned) by itself.

° The ma|n target |S a d|V|de_ void vecadd(float* a, float* b, int n){

if(n == 1){
and-conquer algorithm. reroet D
spawn vecadd(a, b, n/2);
_ eg SOrt FFT FMM AMR spawn vecadd(a+n/2, b+n/2, n-n/2);
e / / / / sync;

cache-oblivious GEMM ;"

(¥ THE UNIVERSITY OF TOKYO

Overheads of Task Parallel Program

« In general, task parallel runtime is designed to handle
fine-grained parallelism efficiently.

« However, extreme fine granularity imposes large
overheads, degrading the performance.

void vecadd(floatx a, floatx b, int n){

. : : . if(n == 1){
This vecadd is a too fine-grained task; xa += *Db;
_ telse{
one leaf task only calculates *a += *b. spavn vecadd(a, b, n/2):

spawn vecadd(a+n/2, b+n/2, n-n/2);
sync;

3

10
(f¥ THE UNIVERSITY OF TOKYO

Overheads of Task Parallel Program

« In general, task parallel runtime is designed to handle
fine-grained parallelism efficiently.

« However, extreme fine granularity imposes large
overheads, degrading the performance.

void vecadd(floatx a, floatx b, int n){
if(n == 1){
*a += *b;
telse{
spawn vecadd(a, b, n/2);
spawn vecadd(a+n/2, b+n/2, n-n/2);
sync;

3

This vecadd is a too fine-grained task;
one leaf task only calculates *a += *b.

}

 Cut-off has been known as an effective optimization

technique.
(¥ THE UNIVERSITY OF TOKYO

11

Cut-off: An Optimization Technique

 Cut-off is a technique to reduce a tasking overhead by
stop creating tasks in a certain condition.

- i.e., execute a task in serial in that condition.

void vecadd(float* a, floatx b, int n){ void vecadd(float* a, float* b, int n){

if(n == 1){ if(1<= n && n <=1000){
*a += *xb; vecadd_seq(a, b,‘ﬁi:: _ e
Jelsef Jelses A cut-off condition
spawn vecadd(a, b, n/2); spawn vecadd(a, b, n/2);
spawn vecadd(a+n/2, b+n/2, n-n/2); spawn vecadd(a+n/2, b+n/2, n-n/2);
sync; sync;
3 . 3
) | Call a sequential vecadd 3
; _ _ //Sequential version of vecadd
if1 <= n && n <= 1000 void vecadd_seq(float* a, float* b, int n){
if(n == 1){
*a += *Db;

e Programmers commonly else

/*spawn*/vecadd_seq(a, b, n/2);
/*spawn*/vecadd_seq(a+n/2, b+n/2, n-n/2);

apply it manually. Jrspauns
3

(f¥ THE UNIVERSITY OF TOKYO }

Cut-off + Further Optimizations

void vecadd(float* a, floatx b, int n){ void vecadd(float* a, float* b, int n){

if(n == 1){ _nFf if(1 <= n && n <= 4096){
*a += *b; 1‘ CUt Of vecadd_seq(a, b, n);
tTelse{ telse{

spawn vecadd(a, b, n/2);

spawn vecadd(a, b, n/2);
spawn vecadd(a+n/2, b+n/2, n-n/2);

spawn vecadd(a+n/2, b+n/2, n-n/2);

sync; sync;
¥)
>)
void vecadd_seq(float* a, float* b, int n){
for(int 1 = 0; 1 < n; i++)
- 1] += i —
2. Transformation ati] == blil;

}

| vecadd_seq() is loopified.

« |n addition to reducing tasking overheads, further
transformations are applicable to serialized tasks
In some cases.

13
(f¥ THE UNIVERSITY OF TOKYO

\)\e\a"ed

Dynamic Cut-off

» Most previous studies on automatic cut-off [*1,%2,%*3]
focused on adaptive cut-off (dynamic cut-off)

- Dynamic cut-off is a technique not creating tasks when
runtime information tells task creation is not beneficial.

« Runtime information:
a total number of tasks, task queue length, execution
time, depth of tasks, frequency of work stealing etc...

« Problems:
Cost to evaluate a cut-off condition is large,
Optimizations after the cut-off are less applicable.

[*1] Bi et al. An Adaptive Task Granularity Based Scheduling for Task-centric
Parallelism, HPCC '14, 2014

Dynamic cut-off adva ntage: |[*2]Duran etal. An Adaptive Cut-offfor Task Parallelism, SC'08, 2008 "
id licabl [*3] Thoman et al. Adaptive Granularity Control in Task Parallel Programs
WIGEr applicable range. Using Multiversioning, Euro-Par'13, 2013

Our Goal: Automatic Cut-off

« Our goal is developing automatic cut-off including
further optimizations automatically for
task parallel programs without any manual cut-off.

(¥ THE UNIVERSITY OF TOKYO

void vecadd(float* a, float* b, int n){

if(1 <= n & n <= 4096){
vecadd_seq(a, b, n);

telse{
spawn vecadd(a, b, n/2);
spawn vecadd(a+n/2, b+n/2, n-n/2);
sSync;

}

}
void vecadd_seq(float* a, float* b, int n){

// Vectorize the following for-loop,

// since task keywords implicitly reveal
// each iteration is independent.
for(int 1 = 0; 1 < n; i++)

alil += b[il];
}

Our Goal: Automatic Cut-off

« Our goal is developing automatic cut-off including
further optimizations automatically for

N N N U N e e U NN R A D S e e N e U I A A N e D S e Ve e U

Eet's say divide-until-trivial task parallel programj

S.
_J

- Compiler optimizations 7 28 G Y peese - > 1t M
. dd_ , b, ;
for simple loops have eloeq e BT
spawn vecadd(a, b, n/2);
been well developed. spawn vecadd(a+n/2, b+n/2, n-n/2);
sync;
3

« Loop blocking, unrolling

. void vecadd_seq(float* a, float* b, int n){
|nterChange, etc... // Vectorize the following for-loop,

// since task keywords implicitly reveal

— Develop optimizations foring 1o g, gn e pdebendent:
. alil += b[i];
for divide-until-trivial tasks. |3

(f¥ THE UNIVERSITY OF TOKYO

Index

2. Static Cut-off and its Limitations

- Our previous work: static cut-off

- Limitations

(¥ THE UNIVERSITY OF TOKYO

17

What we've proposed: Static Cut-off

e Static cut-off is an automatic cut-off method including
a series of compile-time optimization technigues for
We proposed it

task parallel programs. in PACT '16 [*].

||||||||||||||||||||||||||

||||||||||||||||||||||||||

* |t tries to aggregate tasks near Ieaves{

+ Low risk of serious loss of parallelism.

+ Chance to apply powerful compiler optimizations
after cut-off.

[*] Iwasaki et al., A Static Cut-off for Task Parallel Programs, PACT '16, 2016.

What we've proposed: Static Cut-off

« |t tries to aggregate tasks near leaves.
T —

[Key idea: use a height instead of a depth.j

Depth/Height of Tasks

void fib(int n, int*x r){

« Consider a task tree of fib(16) below. if(n < ¢

xXr = n;
: 1fn <
fib calculates g, :{” itn <2 yelse{

. int a, b;
Fn-1 + Fn-2 otherwise spawn fib(n-1, &a);
spawn fib(n-2, &b);

sync;

*r = a + b;
}
}
| n=16(root) W
n=14 | n=15 |
—= e e
n=2 n=7 | | n=9
n=6
s -
. =4 . n=3 = (20
Cn=3) (=2 (h=2 | n=1) (1=] (=1 (=1 (n=@)
~n=2 n=1 n=1 n=0 n=1 n=0 ‘n=1 n=0 20

‘n=1 n=0

Depth/ of Tasks

void fib(int n, int*x r){

« Consider a task tree of fib(16) below. if(n < 2)4
. xXr = n;
fib calculates r, —- " ifn <2 yelse{
Fon {Fn—] + Fn-2 otherwise int a, b; ,
spawn fib(n-1, &a);

. . fib(n-2, &b);
- Depth is easy to obtain. shoun Tib(n=2, &0)

*r = a + b;

 e.g. increment a variable from the root. } }

mln "de@ | |
TDepth n=le(root)

~ n=14 n=15

[\ rn=2 :] JJ/ n=7 ,\l\[: n=9]
| / ” . ns6
4 a5 . n=4)
. n=4 . n=3 [n=3] (n=2)
n=3 | [n=2 (n=2] [n=2] [n=2 | [(n=1 (n=1] (n=0)
" n=2 n=1 n=1 n=0@ n=1 n=0 n=1 n=0)1
\‘kn=1J 'n=0 »

/Height of Tasks

void fib(int n, int*x r){

« Consider a task tree of fib(16) below. if(n < 21
. *r = n;
fib calculates 7, —- " itn <2 yelse{
Fn =% B + Faz otherwise int a, b; .
spawn f}b(n 1, &a);
- Height is difficult to calculate, but it is shown Tib(n=2, &b);
suitable for a cut-off condition. , ek
}
Eﬁut—off in ”deﬂj@
‘ﬁ n=16(root)
TDepth | - n=14 ' n=15

22

Static Cut-off Flow

1. Try to calculate a height-based cut-off condition.

- If the height-based cut-off condition is calculable ...

2. Decide a height parameter H.
3. Apply one of the following:
« Static task elimination
« Code-bloat-free inlining
 Loopification

- Otherwise... —]..
2. App|y the dynamic cut-off [*] []

[*] P. Thoman et al. Adaptive granularity control
in task parallel programs using :)
multiversioning. Euro-Par '13, 2013 Height

Examples of Static Cut-off

2. Decide a height parameter H. == use heuristics. |

if(n == 1){
*a += *b;
telse{
spawn vecadd(a, b, n/2);

sync;
3
3

void vecadd(float* a, floatx b, int n){

spawn vecadd(a+n/2, b+n/2, n-n/2);

(f¥ THE UNIVERSITY OF TOKYO

—@‘n this case]

void vecadd(float* a, float* b, int n){
if(1 <= n && n <= 1024){
vecadd_seq(a, b, n);
telse{

spawn vecadd(a, b, n/2);
spawn vecadd(a+n/2, b+n/2, n-n/2);
sync;

3

}

?77?77?

}

void vecadd_seq(float* a, float* b, int n){

Examples of Static Cut-off

3. Apply one of the following:

- Static task elimination

void vecadd(float* a, floatx b, int n){
if(n DR
*a += *b;
telse{
spawn
spawn
sync;
3
3

-

vecadd(a, b, n/2);
vecadd(a+tn/2, b+tn/2, n-n/2);

(¥ THE UNIVERSITY OF TOKYO

mst remove spawn & sync
|\to reduce the overheads.J/

void vecadd(float* a, float* b, int n){
if(1 <= n & n <= 1024){
vecadd_seq(a, b ,n);
Jelse{
spawn vecadd(a, b, n/2);
spawn vecadd(a+n/2, b+n/2, n-n/2);
sync;
3
3
void vecadd_seq(float* a, float* b, int n){
if(n N{
*a += *b;
telse{
/*spawn*/vecadd_seq(a, b, n/2);
/*spawn*/vecadd_seq(a+tn/2, b+n/2, n-n/2);
/*sync;*/

}

}

Examples of Static Cut-off

(¥ THE UNIVERSITY OF TOKYO

. void vecadd(float* a, float*x b, int n){
3. Apply one of the following: 1f(< n 8 n <= 1024
vecadd_seq(a, b ,n);
Jelse{
— spawn vecadd(a, b, n/2);
spawn vecadd(a+n/2, b+n/2, n-n/2);
o sync;
- Code-bloat-free inlining 2
void vecadd_seq(float* a, float* b, int n){
— if(n == 1){
*a += *b;
}else{‘ .
void vecadd(floatx a, float* b, int n){ for(int 1 =0; i < 2; i++){
if(n == 1){ flqat *QZ, *b2; int n2;
*a += *b; SW1tCB(1){
}else{ Case_ : _ ~
spawn vecadd(a, b, n/2); cagg_?f b2=b ; n2=n/2; break;
252wh vecadd(a+tn/2, b+tn/2, n-n/2); ‘_5\\~. a2=a+n/2; b2=b+n/2; n2=n-n/2; break;
. pe }
) } Apply |nI|n|ng to reduce —> //Inline 10 times here.
function call overheads } vecadd_seq(a2,b2,n2);
w/0 exponential code growth. }
}

Examples of Static Cut-off

3. Apply one of the following:

. e . void vecadd(float* a, float* b, int n){
- Loopification if(1 <= n 8& n <= 1024){
vecadd_seq(a, b ,n);
telse{
spawn vecadd(a, b, n/2);

void vecadd(float* a, floatx b, int n){

if(n == 1){ spawn vecadd(a+n/2, b+n/2, n-n/2);
*g += *b, sync,
Yelse{ }

}
void vecadd_seq(floatx a, floatx b, int n){
for(int i=0; i<n; i++)

alil += b[i];

spawn vecadd(a, b, n/2);
spawn vecadd(a+n/2, b+n/2, n-n/2);
sync;
b

3

Simplify the control flow

and also promote vectorization.
(¥ THE UNIVERSITY OF TOKYO

27

Summary of Static Cut-off

First, try to calculate a height-based cut-off condition.

- Ifitis calculable, determine H and apply one of them:

e Static task elimination :reduce tasking overheads.
« Code-bloat-free inlining : + reduce function call overheads.

 Loopification : + convert recursion into a loop.
~

|j_ower is powerful, but less likely to be applicablej

- Otherwise, apply the dynamic cut-off [¥]

[¥] P. Thoman et al. Adaptive granularity controlg
in task parallel programs using :
multiversioning. Euro-Par '13, 2013

Height

Limitations of Static Cut-off

» The evaluation had shown our static cut-off enhanced
performance, yet there are room for further tuning to
achieve best performance.

1. Heuristics-based decision on cut-off threshold does not
always return the optimal ones.

2. Optimization for serialized tasks can be improved more.
* e.g.,combining multiple transformations
3. Dynamic cut-off is not so efficient.

« However, our static cut-off cannot be applied to all.

29
(f¥ THE UNIVERSITY OF TOKYO

Index

3. Our Proposal: Cut-off with Autotuning

- Autotuning framework

(f¥ THE UNIVERSITY OF TOKYO

30

Cut-off with Autotuning

 Decide a cut-off strategy using an autotuning way.

 There are three possible elements for tuning:
1. Cut-off thresholds (= a cut-off condition)

« Especially for loopification, the cut-off condition has
an impact on cache-blocking effect.

2. Combination of transformations.
« e.g. inlining & parallel + loopification & serial
3. Whether depth or height is used.

(¥ THE UNIVERSITY OF TOKYO

AUtOtu N i ng F I ow Black box for nowj

Script to
compile
& execute

Target
code
(LLVM IR)

Autotuned
config

User's Input Output

* Input: original code + script to compile & run
« Qutput: autotuned configuration file

- Our compiler generates an autotuned program
with that file.

« We adopt an autotuning strategy similar to that of

PetaBricks[*].
[*]J. Ansel et al., PetaBricks: A Language and Compiler for

<B 3
(¥ THE UNIVERSITY OF TOKYO ~ algorithmic Choice. PLDI ‘09, 2009.

PetaBricks

 PetaBricks[*], proposed by Ansel et al. fron Inin]

to Out[n]

is an autotuning framework for {
rule MergeSort .
parallel divide-and-conquer ro (ot our) from (In in)
algoritth. } [...]; // do MergeSort
. .) rule QuickSort
- It focuses on algorithmic choice. to (0ut out) from (In in
- e.g., for sorting, we can combine Loeedi /7 do quicioort
i i I rule InsertionSort
mergesort, quicksort, insertionsort to (out out) from (In in)
. {
together, by switching at each 11) do Isertionsont
“conqguer” phase. .

 Users need to write multiple versions of the algorithm.

[*] J. Ansel et al., PetaBricks: A Language and Compiler for 33

(¥ THE UNIVERSITY OF TOKYO Algorithmic Choice. PLDI '09, 2009.

Basic Idea: Connecting Tasks

« Similar to the approach of PetaBricks, we optimize cut-
off by connecting various tasks with appropriate

conditions.
Original Transformed Transformed Transformed| -
task task task?2 task3
Condition1 Condition2 Cond|t|0n3

: switch
- The simplest cut-off is represented as foIIows.

Original Serialized function
task (Static task elimination)
34

(¥ THE UNIVERSITY OF TOKYO Cut-off Condition

Example: Fibonacci

Grst, run the original task \

to ensure parallelism,
then switch to the serialized

to reduce a overhead.
The leaf is inline-expanded

\ for serial performance./

void fib(int n, int* r){

if(n < 2){
xr = n;

telse{
int a, b;
spawn fib(n-1, &a);
spawn fib(n-2, &b);
sync;
*r = a + b;

35

Example: Fibonacci

(rst, run the original task O YOS o N e e A
I *r = n;
to ensure parallelism, relsel
then switch to the serialized int a, b;
to reduce a overh nogial ek palielfuniory)
Leaf tasks are inline-ex Runin serial (3 <n <12) L=t)
(a normal recursive function) \: n=10 \ \\ n=9
\ for serial performa = -
| 5 =4
o3
(=2 n=1
=0 n=1 n=0

e e e - Runin serial (n < 4)
(a recursive function inline-expanded twice)

. . wice-inlined
Original Serialized -
. serialized
task function .
function 16

ifn<11 ifn<4

Example: Final Code

- wice-inlined
Original Serialized serialized
task function function
ﬁn<11 ifn<4
void fib(int n, int* r){ o\ i4 fip2(int n, intx r){
if(n < 11)¢ if(n < 4){
{1b2(n, r); fib3(n, r): — void fib3(int n, int* r){
it s, b: yelse{ 1fn < 2){
in a,f.l;(PR) int a, b; *r = n;
spawn fib(n-1, &a); fib2(n-1, &a); telse

spawn fib(n-2, &b);
sync;
xr = a + b;

fle(n 2 &b)7
*r—a+b

[inlined twice];

(f¥ THE UNIVERSITY OF TOKYO

37

Search Space for Autotuning

» There are two tuning parameters:_

~Sometimes not parallehzeil

1. Switching conditions __eg, serialized task

2. Optimizations for each task ([task |)

« + Optimization parameters (e.qg., # of times of inlining)

« The number of patterns are potentially countless.

Original Transformed Transformed Transformed| >
task task] task?2 task3

Condition1 Condition2 Cond|t|0n3

: switch 38
(f¥ THE UNIVERSITY OF TOKYO

Basic Cut-off Strategy
To limit the search spacej

1. Use height rather than depth if possible.

2. # of task versions is at most 3.

N
[Task H Task?2 H Task3
y

~ ConditionT ~ Condition2 .
 An original task: no optimization is appliec

— fine-grained & parallel

« A middle task: optimization may be applied
— fine~coarse-grained & serial

« A leaf task: optimization may be applied

— coarse-grained & serial
(f¥ THE UNIVERSITY OF TOKYO

39

Three Typical Patterns

« We defined three typical patterns to limit the search
space.

- Pattern 1: depth-based cut-off
« Target examples: tree traversals

- Pattern 2: height-based cut-off without loopification
« Target examples: fibonacci, nqueens

- Pattern 3: height-based cut-off with loopification

« Target examples: vector addition, matrix multiplication

(¥ THE UNIVERSITY OF TOKYO

40

Three Typical Patterns

« We defined three typical patterns to limit the search
space.

- Pattern 1: depth-based cut-off

« Target examples: tree traversals

(f¥ THE UNIVERSITY OF TOKYO

41

Three Typical Patterns

« We defined three typical patterns to limit the search
space.

- Pattern 2: height-based cut-off without loopification

« Target examples: fibonacci, nqueens

(f¥ THE UNIVERSITY OF TOKYO

42

Three Typical Patterns

« We defined three typical patterns to limit the search
space.

- Pattern 3: height-based cut-off with loopification

« Target examples: vector addition, matrix multiplication

43
(f¥ THE UNIVERSITY OF TOKYO

Three Typical Patterns

« We defined three typical patterns to limit the search
space.

- Pattern 1: depth-based cut-off
« Target examples: tree traversals

- Pattern 2: height-based cut-off without loopification
« Target examples: fibonacci, nqueens

- Pattern 3: height-based cut-off with loopification

« Target examples: vector addition, matrix multiplication

(¥ THE UNIVERSITY OF TOKYO

44

Pattern 1: Depth-based Cut-off

« Itis designed for tasks to which it is difficult to apply
static cut-off.

- e.g., tree traversal programs, unbalanced tree search

[]\
‘ Depth-based
Condition T T ——
g” Serialized |
/ EL function

i

[Originaltask} Pr anr:Lrl?cijn i

CBF inlining: E " CBFinlined |
code-bloat-free inlining ‘| function |}

(¥ THE UNIVERSITY OF TOKYO

Pattern 2: Height-based Cut-off

without loopification
e Itis designed for tasks to which static cut-off is

applicable, but loopification is not.

- e.g., fib, nqueens

)
‘ Height-based Height-based
Condition-+ ===+.=== conditiop == == =iimam
Vs \ V4 N\
g - 1] Serialized
/ :[Inllngd } : task
: function Lo
Original task : : Inlined \
g : i : leaf task)
CBF inlined '
Etpreserves recursive call sites. f-[function CBF inlined |
leaf task

They completely remove }———— /s 46
(_@¥ THE UNIVERSITY OF IQ_ recursion by inlining H times. J

L FEE B B BEE B B BEN N N BEE W

Pattern 3: Height-based Cut-off

with loopification
« |tis designed for loopifiable tasks.

- e.g., vecadd. matmul, heat2d

(— \
\ Height-based Height-based
Condition-+ === === Condition S
LooP | |LoOP|| LoOP ,'n Q\l It significantly

 Inlined : affects loop-blocking.

\ / : function :

[Originaltask}—?» __.E Loopifed]

1| CBFinlined | i
'l function |1
' J 47

(¥ THE UNIVERSITY OF TOKYO

Avoid Loss of Parallelism

« More parallelism is better if the performance is the
same in terms of dynamic load balancing.

 Our autotuning adapt the switching condition
preserving most parallelism, which can accomplish
99% of the optimal performance measured.

- In this example, we choose n<2000
even if n<10000 performs slightly

Cut-off n<20000: 11[s]

Cut-off n<10000: 10[s]

spawn vecadd(a, b, n/2);
spawn vecadd(a+n/2, b+n/2, n-n/2);
sync;
3
3

void vecadd(float* a, float* b, int n){ better.
if(n == 1){ Cut-off n<2000: 10.1[s]
*a += *Db;
Jeloe @ot fastest, though. f

Cut-off n<1000: 12.0[s]

Cut-off n<100: 14.0[s]

Autotuning: Summary

Script to
compile
& execute

Target
code
(LLVM IR)

User's Input

Autotuning framework |

Check availablity of
each transformation method

 Trytoidentify ‘

Failed |

-

a height-based ‘
condition

Suc\ceed ed -
Try to apply
loopification

Create configurations

; for depth-based tasks)

‘ Failed r

/ Create configurations \
for height-based tasks

- Create an optimized version
of the target code
Insert time measurement
functions

Succeeded r

Create configurations

for loopifiable tasks

Run a script to
measure performance

,,,,,,,,,,,,,,,,,,,,, e,

Choose the optimal one ﬂ

Autotuned
config

Output

« Our autotuning searches for the best combination of
differently transformed tasks.

- |t contains a cut-off concept.

« |t employs three patterns to limit the search space.

- Depth-based one

- Height-based ones (w/ & w/o loopification)

49

Index

4. Evaluation

- Benchmarks & Environment

- Performance Evaluation

(¥ THE UNIVERSITY OF TOKYO

50

Implementation & Environment

« We implemented it as an optimization pass
on LLVM 3.6.0.

Modified MassiveThreads[*1], a lightweight work-

stealing based task parallel system adopting the child-
first scheduling policy[*2].

« An autotuning driver is written in Python.

« Experiments were done on dual sockets of Intel Xeon
E5-2699 v3 (Haswell) processors (36 cores in total).

- Use numactl --interleave=all to balance physical
memory across sockets.

[*1] MassiveThreads https://qgithub.com/massivethreads/massivethreads 51

B ’ THE UNIVERSITY OF TOKYO [*2] Mohr et al., Lazy Task Creation: A Technique for Increasing the Granularity of
. Parallel Programs, LFP '90, 1990

Benchmarks

* 11 benchmarks were prepared for evaluation.

- All are divide-until-trivial task parallel programs.

. flb . heat3d Dynamic Cut-off Autotuning Pattern
. NQUEens . gaussian fib v 2. Height-based without loopification
9 - matmul nqueens v 2. Height-based without loopification
* nbod : . e
nbody v 2. Height-based without loopification
. dd treeadd
veca treesum vecadd v 3. Height-based with loopification
- heat2d u heat2d v 3. Height-based with loopification
" uts heat3d v 3. Height-based with loopification
gaussian v 3. Height-based with loopification
matmul v 3. Height-based with loopification
treeadd v 1. Depth-based
‘ Static cut-off is no} treesum v 1. Depth-based
appllcable to them. uts v 1. Depth-based

(f¥ THE UNIVERSITY OF TOKYO

Multi-threaded Performance

@ i 36 workers. i
é —~ 1000 tHigher is
Sl better
: £ ﬂﬂﬂﬂﬂﬂ 1Tl ﬂ”w
> % -] = dynamic
s O A0 ,O O -
© L L PP S @ P S 7 static

> D O SN
< QO?Q/ (\\Q AQ’L NN fo‘;’ (0’8& ’é‘?’e (\Qg, o‘Q M autotuning

® &

 Optimization including dynamic (dynamic cut-off[*])
improved performance over original (no cut-off)

« autotuning (proposal) was faster than dynamic and
static (static cut-off) overall.

53
[*] P. Thoman et al. Adaptive granularity control in task parallel programs using

multiversioning. Euro-Par '13, 2013

(f¥ THE UNIVERSITY OF TOKYO

vs. Loop Parallel Programs

B autotuning
o autotuning (proposed S 12 B static tHLg;eP;fgris
autotuned one) was : I;D 14 EZEE_Opﬁmized
- comparable to gc 7 Mpal
polly (Polly) and =2 %
omp (OpenMP) 2 g4
0.2

- defeated by omp_optimized

(hand-optimized OpenMP). & & & ¢
NERCEEE NS

« Hand-tuned OpenMP can
employ flexible cache-blocking.

 div-and-conq divides the axis
only by a constant integer.
(¥ THE UNIVERSITY OF TOKYO

54

5. Conclusion

(f¥ THE UNIVERSITY OF TOKYO

Index

55

Conclusion

Script to ‘ Check availablity of ‘ . (Create an optimized version)
compile each transformation method 1 of the target code
& execute Trytoidentify ‘ Failed Create configurations] (mEenime meEsshement g
Target ~ = aheight-based | h for depth-based tasks | functions &
code ~ conditon)) » <
(LLVM IR) Sucéeed ed N Create configurations Various Run a script to
, Trytoapply Failed r for height-based tasks configs ' measure performance

Autotuned
loopification \ , . . \ R — ; config
X Create configurations (‘ i
‘ Succeeded r for loopifiable tasks Choose the optimal one ﬂ ‘

User's Input | Autotuning framework Output

« We developed an autotuning framework for
divide-until-trivial task parallel programs.

e It achieved significant speedup over the original
naive task parallel programs.

56
(f¥ THE UNIVERSITY OF TOKYO

