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Abstract—A task parallel programming model is regarded
as one of the promising parallel programming models with
dynamic load balancing. Since this model supports hierarchical
parallelism, it is suitable for parallel divide-and-conquer algo-
rithms. Most naive divide-and-conquer task parallel programs,
however, suffer from a high tasking overhead because they tend
to create too fine-grained tasks. There are two key idea to
enhance the performance of such a program: serializing a task
in a cut-off condition which is a tradeoff between decrease of
concurrency and parallelization overheads, and applying effective
transformations for the task in the condition. Both are sensitive to
algorithm features, rendering optimization solely with a compiler
ineffective in some cases.

To address this problem, we proposed an autotuning frame-
work for divide-and-conquer task parallel programs. It auto-
matically searches for the optimal combination of three basic
transformation methods [1] and switching conditions with less
programmers’ efforts. We implemented it as an optimization
pass in LLVM. The evaluation shows the significant performance
improvement (from 1.5x to 228x) over the original naive task
parallel programs. Moreover, it demonstrates the absolute perfor-
mance obtained by our autotuning framework was comparable
to that of loop parallel programs.

Index Terms—compilers; performance optimization; task par-
allelism; cut-off; autotuning;

I. INTRODUCTION

Parallel programming becomes more and more important to
exploit modern processors which employ increasing number of
cores. A task parallel programming model supporting creation
of fine-grained tasks and dynamic load balancing is believed
to be a desirable solution for parallel programming with
high performance and productivity. This model is especially
suitable for divide-and-conquer algorithms since it provides
hierarchical parallelism. Task parallelism is adopted by numer-
ous well-known parallel systems and libraries such as Cilk [2],
Intel Threading Building Blocks [3], and OpenMP [4].

However, it is very challenging to achieve high performance
by just writing a simple task-based divide-and-conquer pro-
gram. Significant performance degradation for such a program
is particularly caused by a large tasking overhead; naive
divide-and-conquer algorithms tend to create too fine-grained
tasks, increasing a runtime cost for managing them. A “cut-
off” is a common optimization technique to reduce the runtime
overhead; it enlarges the granularity of tasks by rewriting a
program to call corresponding functions instead of creating
tasks in a certain condition. A condition switching to call

serialized functions is referred to as a “cut-off condition”. In
addition to determining a cut-off condition, programmers are
often required to write optimized version of a leaf task to fully
elevate performance, which hinders productivity.

We developed compiler-based automatic cut-off techniques
for divide-and-conquer task parallel programs [1]. This sys-
tem automatically applies a cut-off with an appropriate cut-
off condition which is statically obtained, and optimizes a
serialized task with one of a few optimization methods based
on the cut-off condition analysis. It also supports the state-
of-the-art dynamic cut-off algorithm proposed by Thoman et
al. [5] as a fallback if our cut-off condition analysis fails.
This system fully automates the cut-off optimization, but we
found it is hard to obtain the optimal cut-off condition without
any execution in some cases because a cut-off condition is
an essential factor controlling task granularity which balances
amount of concurrency and parallelization overheads.

In this paper, we propose an autotuning framework for
divide-and-conquer task parallel programs; it optimizes a task
by searching for the best cut-off conditions and optimization
combination of a few cut-off techniques our compiler em-
ploys [1]. The proposed framework is expected to be run
on a target machine and requires a script for compilation
and execution in addition to a code which contains a task
function. Our framework can highly optimize programs by
combining with the best cut-off condition and our optimization
techniques. We implemented the transformation methods as
an optimization pass in LLVM [6] and wrote an autotuning
interface outside LLVM in Python.

This paper makes the following contributions:
• We developed a framework which highly optimizes task

parallel programs without any cut-off using an autotuning
technique.

• Our proposed framework significantly enhanced perfor-
mance of task parallel programs, showing speedups of a
geometric mean of 15.4x over the original unoptimized
task parallel programs. The performance was comparable
to, or even faster in some cases than the loop-based
programs written in OpenMP [4] with GCC and Polly [7]
with LLVM.

The organization of the rest of this paper is as follows.
Section II gives a brief explanation of the current cut-off
transformations we previously developed [1], and discusses



void fib(int n, int* ret){
if(n < 2){
*ret = n;

}else{
int a, b;
spawn fib(n-1, &a);
spawn fib(n-2, &b);
sync;
*ret = a + b;

}}

Fig. 1: Original task parallel Fibonacci (fib)
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Fig. 2: Task tree of fib shown in Fig. 1. Tasks enclosed by a
dotted red line are the cut-off candidates in the 2nd termination
condition.

on three motivating cases to show the problems of our previ-
ous approach. Section III explains our proposed autotuning
framework which tries to find the optimal combination of
transformations and switching conditions. Section IV evaluates
the performance obtained by our proposed autotuning system.
Section V presents related work, and the following Section VI
concludes this paper.

II. CUT-OFF TRANSFORMATION

A. Static Cut-off Overview

To provide better understanding of our autotuning frame-
work, this section briefly overviews our static cut-off tech-
niques [1] before discussing the potential limitations of the
pure compiler approach. Our static cut-off mainly consists
of two components: termination condition analysis and some
transformation methods.

For example, a task parallel program calculating an nth
Fibonacci number shown in Fig. 1 suffers from a very large
overhead because the naive fib creates too fine-grained tasks
until n gets less than two. A cut-off is a widely-used technique
to reduce such a overhead by rewriting a task to call a
serialized function instead of creating a task in a certain
condition. Humans can easily identify a condition in which
the amount of the task’s work is sufficiently small for a cut-
off, but it is not the case for runtime systems or compilers. To
strike a balance between flexibility of dynamic load balancing
and low tasking overheads, our static cut-off system tries to
identify an Hth termination condition, a condition composed
of the arguments in which the height of the task tree rooted
from that task is within a given height H . Consider a task
tree of fib in Fig. 2. Dotted lines in the figure enclose the
cut-off candidates with the 2nd termination condition. Divide-
and-conquer tasks in an Hth termination condition with an
appropriate H usually perform a small amount of work, thus
serializing them will not incur serious loss of concurrency.

If a termination condition can be successfully obtained by
the compiler analysis, our compiler tries to apply one applica-
ble transformation method among the following three: static
task elimination, code-bloat-free inlining, and loopification.
Examples of resulting code are shown in Fig. 3.

Static task elimination shown in Fig. 3a performs a naive
cut-off transformation by simply replacing task creations with
sequentialized function calls under the obtained termination
condition. In Fig. 3a, a serialized function fib_seq is newly
created by removing task creations and the original task fib

is converted to call it in the 2nd termination condition. This
transformation is so simple that it is applicable to any tasks,
but a large function call overhead remains if the original task
is extremely fine-grained.

Inline expansion is the most popular method to reduce
a function call overhead. The normal inlining is, however,
not suitable for divide-and-conquer functions because it in-
creases the code size exponentially if they have multiple self-
recursions. To avoid code bloat, the compiler tries to aggregate
the recursive calls into one and then apply inline expansion.
We call this method code-bloat-free inlining. This code-bloat-
free inlining replaces multiple recursive call sites with a loop
containing one recursive call site, then applies the simple inline
expansion H times. It increases the code size linearly, not
exponentially. Fig. 3b describes the serialized fib_seq to
which code-bloat-free inlining is applied.

We developed more aggressive optimization which gener-
ates a flat or shallowly nested loop instead of a deeply (i.e.,
H times) nested loop created by code-bloat-free inlining. For
example, a divide-and-conquer vector addition task presented
in Fig. 3c is apparently do the same work of a single loop
presented in Fig. 3d for humans. Our optimization called
loopification tries to do that by the analysis with a symbolic
algebra solver and an Hth termination condition. Though the
applicable range of this loopification is limited to the tasks
which can be potentially represented as a regular loop (e.g.,
stencil kernels or dense matrix multiplication) for now, it is
useful to write such a program in a divide-and-conquer manner
to take an advantage of achieving the effect of cache blocking
at all levels [8] without any explicit tiling.

In addition to these three optimizations, our automatic cut-
off system also employs a dynamic cut-off strategy [9] in order
to cover a wider range of tasks. The current implementation
adopts the dynamic cut-off with multiversioning proposed by
Thoman et al. [5], which is the state-of-the-art dynamic cut-
off algorithm to the best of our knowledge. Their proposal
can be applied without any static analysis. In our system, the
dynamic approach is applied when the static analysis fails to
calculate a termination condition.

In summary, the algorithm selection flow of the automatic
cut-off system we previously proposed is as follows. Our
compiler first runs the static analysis to obtain a cut-off
condition, and then tries to apply loopification, code-bloat-
free inlining, and static task elimination in this order if the
analysis succeeds; otherwise the compiler applies the dynamic
cut-off [5].



void fib(int n, int* ret){
if(n < 4){
fib_seq(n, ret);

}else{
int a, b;
spawn fib(n-1, &a);
spawn fib(n-2, &b);
sync;
*ret = a + b;

}}
void fib_seq(int n, int* ret){

if(n < 2){
*ret = n;

}else{
int a, b;
fib_seq(n-1, &a);
fib_seq(n-2, &b);
*ret = a + b;

}}

(a) Static task elimination

void fib_seq(int n, int* ret){
if(n < 2){
*ret = n;

}else{
int a, b;
for(int i = 0; i < 2; i++){

int n2, *ret2;
switch(i){
case 0: n2=n-1; ret2=&a; break;
case 1: n2=n-2; ret2=&b; break;
}
if(n2 < 2)

*ret2 = n2;
else

[...]
}
*ret = a + b;

}}

(b) Code-bloat-free inlining

void vadd(float* a, float* b, int n){
if(n == 1){
*a += *b;

}else{
spawn vadd(a, b, n/2);
spawn vadd(a+n/2, b+n/2,

n-n/2);
sync;

}}

(c) Task parallel vector addition

void vadd_seq(float* a, float* b,
int n){

for(int i = 0; i < n; i++)
*(a+i) += *(b+i);

}

(d) Loopification

Fig. 3: Examples of resulting code [1]

B. Problems of Our Previous Approach

We describe problems of the static cut-off system, which are
difficult to solve by a pure compiler approach. We will focus
on three motivating cases to see the problems concretely.

1) Inefficiency of Fallback Strategy: We apply the dy-
namic cut-off method if the compiler fails to analyze the
termination conditions. Our static analysis fails due to lack
of implementation in some cases, but there are tasks which
essentially do not have simple termination conditions (e.g.,
tasks traversing pointer-based trees). For such a task, a manual
cut-off commonly introduces a condition in which a depth
from the root task is larger than a certain threshold D. This
depth-based cut-off strategy is useful when a structure of the
task tree is known to some extent in advance; otherwise, it may
significantly reduce parallelism if the depth D is too small, or
just imposes an overhead for evaluating the cut-off condition
if D is too large. It is often the case, however, that the tree
structure is hard to obtain at compile time.

The dynamic cut-off is an effective method to improve the
performance of these tasks, but we found that it sometimes
did not improve performance as expected due to an additional
runtime overhead. It is ideal that the optimal depth parameter
D is obtained at compile time, which allows the compiler to
apply a straight-forward cut-off and enjoy further optimization
for serialized tasks as well as the manual cut-off does.

2) Function Size Estimation: A cut-off threshold is an
important parameter to balance between amount of parallelism
and parallelization overheads. For tasks to which static task
elimination or code-bloat-free inlining is applicable but loop-
ification is not, the main purpose of cut-off is reduction of
a tasking overhead. For example, if we want to maintain a
tasking overhead lower than 2% of the total execution time, the
task granularity should be at least 49 times larger than the task
creation overhead. If this overhead is given as a constant, let
say 100 cycles per task, the optimal height can be calculated by
choosing the smallest height with which an estimated number
of cycles of the function is more than 5000 cycles. Though
this strategy seems effective on avoiding significant loss of
parallelism, the estimation of the number of cycles is very

difficult in reality; underestimation results in an ineffective cut-
off while overestimation unnecessarily decreases parallelism.
The fib task shown in Fig. 1 is a good example to see the
difficulty in estimating an appropriate height parameter H ,
since the task tree of fib is not balanced as illustrated in
Fig. 2.

3) Cache-Aware Loop Blocking Size: For tasks to which
loopification is applicable, a cut-off is not only for allevi-
ating a tasking overhead, but also for simplifying control
flows to improve sequential performance. For such tasks,
the cut-off height parameter H is more important; their
divide-and-conquer strategies have an effect of recursive cache
blocking [8] when the programs are converted into multi-
dimensional loops. Since the best cache blocking size of the
loopified task depends on application features and execution
environments, the pure compiler approach can hardly address
this problem.

III. AUTOTUNING FRAMEWORK

To tackle these problems originating from the difficulty
in various estimations at compile time, we propose an au-
totuning framework for divide-and-conquer task parallel pro-
grams based on the automatic cut-off system we previously
proposed [1]. This framework requires a target code written
in LLVM-IR – an intermediate representation in LLVM –
including a simple task parallel program, and a script file
to compile and execute the program. As well as general
autotuning frameworks do, it searches for the best parameters
and transformation combination by executing programs on
a target machine by changing compile options, and finally
outputs a configuration file that can be used to compile the
program with highly-optimized options. Fig. 4 presents the
flow of our autotuning framework.

This autotuning approach itself is not so special for tuning
parameters. Nevertheless, we note that there has been no recent
work to focus on the potentials of the simple task parallel
programs to the best of our knowledge. We believe a task
written in a simple divide-and-conquer manner can achieve
high performance on multi-threaded environments if compiler
optimizations are properly applied.
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Fig. 4: Overview of our autotuning framework
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[fib]{
fib: original, mode=task, call fib2 (n < 12)
fib2: original, mode=serial, call fib3 (n < 4)
fib3: simple_inline (unroll=2), mode=serial

}

(b) A configuration to realize the strategy

void fib(int n, int* ret){
if(n < 12){
fib2(n, ret);

}else{
int a, b;
spawn fib(n-1, &a);
spawn fib(n-2, &b);
sync;
*ret = a + b;

}}
void fib2(int n, int* ret){

if(n < 4){
fib3(n, ret)

}else{
int a, b;
fib2(n-1, &a);
fib2(n-2, &b);
*ret = a + b;

}}
void fib3(int n, int* ret){

if(n < 2){
*ret = n;

}else
[inlined twice]

}

(c) The final program

Fig. 5: Example of a possible optimization pattern

A. Basic Strategy

One of the notable divide-and-conquer features is that a
parent divide-and-conquer task and its children are not nec-
essarily the same program if both the parent and its children
do the equivalent work; it is only required that the parent
divides a problem into subproblems and the children conquer
the subproblems. This feature enables us to optimize task
parallel programs by just connecting differently transformed
tasks with a conditional branch. Fig. 5 describes an example

of one possible optimization pattern for fib. Fig. 5b shows a
configuration of the optimization strategy above and Fig. 5c
presents transformed code with the configuration. The final
program contains three differently transformed tasks connected
by conditional branches (n < 12 and n < 4). This transfor-
mation has a cut-off effect since it stops task creation when
n < 12. The naive search space is, therefore, transformation
methods for tasks and conditional branches to connect them.

However, it obviously exposes countless transformation
patterns because we can use any number of tasks and any kinds
of conditional branches. To limit the search space, the targets
are programs which 1) work in parallel when tasks are large
and 2) run sequentially when they get smaller, and 3) execute
a task to which special optimization for the leaf is applied if
necessary. The transformation shown in Fig. 5 is based on this
strategy. 1) Tasks in the upper side of the task tree shown in
Fig. 5a run in parallel to have other cores work sooner. 2) To
reduce a tasking overhead, tasks satisfying an Hth termination
condition, say 10 as H , are serialized. 3) Furthermore, to
reduce a function call overhead, this strategy also applies a
simple inline-expansion twice to the serialized leaf tasks in
the 2nd termination condition and then eliminates recursive
calls in that function because it is known to be executed only
under the 2nd termination condition.

PetaBricks [10] is the most famous autotuning framework
focusing on this divide-and-conquer feature, but it is designed
to require users to write multiple versions of divide-and-
conquer programs. Our compiler can create multiple tasks
derived from an original task by applying several optimiza-
tions: inline-expansion, loopification, removing task creations,
and/or inserting a conditional branch to another task trans-
formed in different ways. Our framework thus searches for
the best combination of transformations and connections of
the divide-and-conquer tasks with an autotuning strategy.

B. Available Optimization Patterns

To describe the autotuning method based on the basic strat-
egy we discussed in detail, we explain possible transformation
patterns for task parallel programs with our current compiler.
There are two fundamental elements for each task; 1) an
optimization method for a task, and 2) a condition to branch
another function based on either depth from the root or height
above the leaves in addition to a function to which the task
branches in that condition.



void vadd(float* a,float* b,int n){
if(n==1) *a+=*b;
else{
vadd(a,b,n/2);
vadd(a+n/2,b+n/2,n-n/2);

}}

(a) No optimization

void vadd(float* a,float* b,int n){
if(n==1) *a+=*b;
else{
if(n/2==1) *a+=*b;
else{

vadd(a,b,n/2/2);
vadd(a+n/2/2,b+n/2/2,n/2-n/2/2);

}
if(n-n/2==1) *(a+n/2)+=*(b+n/2);
else{

vadd(a+n/2,b+n/2,(n-n/2)/2);
vadd(a+(n-n/2)/2,b+(n-n/2)/2,(n-n/2)-(n-n/2)/2);

}}}

(b) Inline-expansion (once)

void vadd(float* a,float* b,int n){
if(n==1) *a+=*b;
else{
for(int i=0;i<2;i++){

float *a2, *b2; int n2;
switch(i){
case 0: a2=a; b2=b; n2=n/2; break;
case 1: a2=a+n/2; b2=b+n/2; n2=n-n/2;
}
if(n2==1) *a2+=*b2;
else{
for(int i2=0;i2<2;i2++){

float *a3, *b3; int n3;
switch(i2){
case 0: a3=a2; b3=b2; n3=n2/2; break;
case 1: a3=a2+n2/2; b3=b2+n2/2;

n3=n2-n2/2;
}
vadd(a3,b3,n3);

}}}}}

(c) code-bloat-free inlining (once)

//assume 1<=n && n<=2
void vadd(float* a,float* b,int n){

if(n==1) *a+=*b;
else{
if(n/2==1) *a+=*b;
if(n-n/2==1) *(a+n/2)+=*(b+n/2);

}}

(d) Complete inline-expansion (in the 1st termination condition)

//assume 1<=n && n<=2
void vadd(float* a,float* b,int n){

if(n==1) *a+=*b;
else{
for(int i=0;i<2;i++){

float *a2, *b2; int n2;
switch(i){
case 0: a2=a; b2=b; n2=n/2; break;
case 1: a2=a+n/2; b2=b+n/2; n2=n-n/2;
}
if(n2==1) *a2+=*b2;

}}}

(e) Complete code-bloat-free inlining (in the 1st termination condition)

//assume 1<=n && n<=2
void vadd(float* a,float* b,int n){

for(int i=0;i<n;i++)
*(a+i)+=*(b+i);

}

(f) Loopification (in the 1st termination condition)

Fig. 6: Six transformation methods

1) Optimization Methods: Our compiler supports three ba-
sic transformations: normal inlining, code-bloat-free inlining,
and loopification. Derived from these three, six versions of
transformations are employed. Three transformations remain
tasks recursive, so the optimized tasks can be used as either
internal nodes or leaves of the task trees. The other three

translate them into serial functions which can be used as
only leaves of the trees because resulting tasks have no
recursive calls. Fig. 6 illustrates the six divide-and-conquer
vector addition tasks generated with these methods above. As
shown in the figure, tasks shown in (a), (b), and (c) can be
used as both internal nodes or leaves, whereas (d), (e), and (f)
are no longer self-recursive.

We note that our autotuning framework is capable of
adopting optimization methods other than inlining methods or
loopification due to the divide-and-conquer feature.

2) Conditional Branch to Other Task: A conditional branch
to another task is a key to connecting multiversioned tasks.
Considering a branch from a parallelized function to a seri-
alized function for example, this concept includes the idea
of a cut-off. Thus determining a branch condition has a
large impact on balancing concurrency and parallelization
overheads. Two parameters can constitute a branch condition:
a depth from the root and a height above the leaves. As
we discussed, a height-based condition is more suitable for
a cut-off, but the termination condition analysis is necessary
to identify the height-based condition. On the other hand, the
depth-based cut-off is applicable to any tasks because the depth
can be easily obtained by incrementing the depth variable from
the root. A condition can contain either of them, or in theory,
combine them if both available (e.g., a condition in which
height is less than 8 or depth is more than 10).

C. Search Space

Since transformed tasks can be connected to any other tasks,
the possible patterns are countless. We therefore follow the
basic strategy argued in Section III-A to search a limited space
which only contains reasonable transformation patterns. Let us
assume there is only one self-recursive task to optimize. Our
proposed system classifies an input task into three patterns cor-
responding to the motivating cases described in Section II-B.
The common direction among these patterns is simple: tasks
near leaves are transformed into serialized ones for further
optimizations, while tasks near the root should be original
in order not to decrease concurrency. We explain the three
patterns.

1) Depth-based Cut-off: Our system applies a depth-based
cut-off to a task in which the termination condition analysis
fails. Our previous cut-off approach adopts the dynamic cut-
off for such a task. We found, however, that it could not
always enhance performance as expected. Our autotuning
framework chooses an appropriate depth by implicitly utilizing
information of a structure of the task tree by executing a
program, whereas the pure compiler approach cannot acquire
such information. The depth parameter D is determined as a
depth which is the largest depth to achieve 99% of the best
performance obtained during the autotuning; the 99% criterion
is imposed to avoid unnecessary reduction of parallelism.

We cannot eliminate self-recursive function calls since the
analysis fails to obtain the exact termination condition, so
tasks after the cut-off must be functions which can be used
as internal nodes ((a) to (c) in Fig. 6); simple inlining and



code-bloat-free inlining are therefore only applicable to the
serialized function.

2) Height-based Cut-off (No Loopification): A height-based
cut-off is applied to a task if the static analysis succeeds to
obtain an Hth termination condition, but loopification fails.
We use a height-based cut-off condition for such a task since
it is expected to bind the size of each serialized task to some
degree regardless of input size. The smallest height to achieve
99% performance compared to the best one is used as the
cut-off parameter H as well as the depth-based cut-off does.

Optimizations based on inlining can be applied to the
serialized function in a certain termination condition. We
consider the following six patterns. The first pattern attempts to
optimize tasks by simply unrolling a function once or multiple
times. The second applies code-bloat-free inlining instead,
which can inline functions more times when the resulting code
size is restricted. In order to remove recursive function calls in
a leaf function, the third and the fourth adopt complete inline
expansion and complete code-bloat-free inlining, illustrated in
Fig. 6d and Fig. 6e. These four patterns above introduce a
simple recursive function between the original task and the leaf
function to connect them if inlining the leaf function cannot be
repeated H times due to the code size limitation. The fifth and
sixth patterns are similar to the third and fourth, but replace the
simple recursive function with a function optimized by simple
inlining or code-bloat-free inlining to reduce a function call
overhead more.

3) Cut-off with Loopification: Loopification, if applicable,
improves performance drastically compared to the original task
parallel programs. In this case, a cut-off condition affects
performance of the loopified function significantly because
the cut-off virtually changes the size of cache blocking. Our
system therefore employs a special autotuning method for
loopifiable tasks. As a height parameter H , this system adopts
the smallest height with which the loopified program can
achieve more than 99% performance compared to the best
performance. After that, it changes the loopification condition
with the cut-off threshold fixed in order to achieve the best
cache blocking.

D. Preprocessing for Autotuning

Our autotuning framework first checks availability of each
transformation method for the task because not all the trans-
formations are applicable to all tasks. Our framework skips
patterns including inapplicable transformations. It is also
required to add additional instructions for the performance
measurement; the system automatically creates an interface
function for calls from outside (i.e., not from a task) and inserts
performance measurement function calls into the function,
which lowers the programmers’ loads to put them manually.

E. Autotuning Results

After executing programs with various optimization pat-
terns, our autotuning system writes down the optimal opti-
mization pattern to the configuration file. This file can be used
for the input of our compiler to optimize a program with the

optimal parameters. It is written in a human-readable format,
so it may provide hints to manual optimization.

IV. EVALUATION

The transformations discussed in the previous section were
implemented as an optimization pass in LLVM 3.6.0 [6]. The
interface of our autotuning framework was written in Python.
Task parallel programs were executed on MassiveThreads [11],
a lightweight task library adopting a child-first scheduling
strategy [12].

For the evaluation, we prepared eleven benchmarks con-
taining a task function without any manual cut-off. The
benchmarks are as follows:

1) fib calculates a 45th Fibonacci number.
2) nqueens counts solutions of the N-Queens problem with

N = 14. Both of fib and nqueens adopt the same task
creation patterns in benchmarks of BOTS [13].

3) nbody calculates forces between all N to N pairs, with
N = 30K. Each particle has mass, 3D position, velocity,
and a temporal variable to accumulate the force.

4) vecadd adds two float arrays and stores the result into
another array. Each array has 109 elements.

5) heat2d is a stencil computation, solving two-dimensional
thermal diffusion equation on a 30K × 30K mesh.

6) heat3d is a 3D version of heat2d on a (1K)3 mesh.
7) gaussian applies a 5 × 5 Gaussian filter to an array of

30K × 30K single precision floating point numbers.
8) matmul multiplies two matrices and stores the result into

another matrix. All three matrices have 2000×2000 single
precision floating point numbers.

9) treeadd receives a pointer-based binary tree structure and
traverses it to update values at the leaves. The input is a
balanced tree including 230 − 1 elements.

10) treesum receives a pointer-based binary tree and sums
up all the values in the leaves by tree traversal. The input
is the same of treeadd.

11) uts runs Unbalanced Tree Search [14]. The input param-
eter set is “T1XL” in the official samples, generating a
geometric tree with 1,635,119,272 elements.

TABLE I: Data size for an evaluation shown in Fig. 8
nbody (40K)2 vecadd 2G heat2d (40K)2

heat3d (1.2K)3 gaussian (40K)2 matmul (5K)2

TABLE II: Applicability of cut-off methods
(code-bloat-free inlining is abbreviated to “cbf” in this table)

dynamic static cbf loopification
fib X X X

nqueens X X X
nbody X X X
vecadd X X X X
heat2d X X X X
heat3d X X X X

gaussian X X X X
matmul X X X X
treeadd X
treesum X

uts X
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Fig. 7: Multi-threaded performance. It shows relative performance of the original (original), the dynamic multiversioning [5]
(dynamic), our static cut-off [1] (static), and the autotuning we propose in this paper (autotuning)

For the performance evaluation shown in Fig. 8, we instead
used benchmarks with larger input data presented in Table I
to make a single execution time longer than 0.2 seconds.
Table II shows the applicability of optimizations to the eleven
benchmarks.

The benchmarks written in C language were first trans-
lated into LLVM IR using Clang, a frontend C/C++ com-
piler of LLVM. Then, we input them into our autotuning
framework. Finally we compiled them into machine language
programs with the LLVM compiler with optimization flags
-O3 -ffp-contract=fast and machine-specifying options.

Experiments were conducted on dual sockets of Intel Xeon
E5-2699 v3 (Haswell) processors (36 cores in total). We
ran every benchmark with numactl --interleave=all to
balance physical memory across sockets. All results in the
charts show the averages of five measurements.

A. Performance compared to task parallel programs

Fig. 7 presents the performance improvement using 36
threads. We measured performance of the original programs
(original), the dynamic cut-off [5] (dynamic), the static cut-
off [1] (static) and our proposal (autotuning). For the dynamic
cut-off, since we were unable implement the simplification
in the unrolling step due to lack of details, we inlined it
and applied the LLVM’s maximum -O3 optimization as our
best effort. Our autotuning framework repeated executing each
pattern three times for search and took the geometric mean
of 894 times as long as the optimal execution time finally
obtained. The baseline is a task parallel program without any
cut-off (original).

As shown in Fig. 7, our optimization achieved a significant
speedup in comparison to original, dynamic and static; our
autotuning framework did from 1.5x to 228x (geometric mean
of 12.2x), while the dynamic cut-off elevated performance
from 1.1x to 2.9x (geometric mean of 1.9x) and our static
cut-off did from 1.2x to 220x (geometric mean of 9.0x).

Compared to the static cut-off using the same compiler
transformations, this result itself was not very surprising con-
sidering the mechanism of the autotuning. The result indicated
the static cut-off left room for performance improvement
especially for fib and gaussian, and some tasks which our
static analysis failed: treesum, uts. The configuration files our
autotuning framework created provide the following insights.
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Fig. 8: Performance comparison of autotuned task parallel
programs to loop parallel programs. The baseline is task
parallel programs optimized by our autotuning framework.
Note (geomean) of polly excludes the cases in which
optimization failed.

fib was a case in which the cut-off height selected in the static
cut-off was much smaller. For gaussian, a larger loop was
preferable as its leaf calculation. Performance of treesum and
uts was not fully elevated by the dynamic cut-off due to its
overheads.

B. Performance compared to loop parallel programs

We manually loop-parallelized nbody, vecadd, heat2d,
heat3d, gaussian, and matmul all of which are express-
ible in loops and compared them with the autotuned task
parallel programs. They performed the same calculations of
the corresponding task parallel programs, while paralleliza-
tion strategies and execution orders were different. The loop
programs were parallelized by OpenMP [4] and Polly [7]. One
used OpenMP with omp parallel for and was compiled by
GCC 4.8.4, with -O3 -ffp-contract=fast. The other was
automatically parallelized by Polly [7], a locality-optimizer for
LLVM based on a loop polyhedral model. It was compiled by
Clang 3.8.0 with -O3 -ffp-contract=fast and its Polly
with -polly -polly-parallel and -polly-vectorizer

= stripmine if it made the programs faster.
Fig. 8 presents the comparison of the optimized task parallel

programs to the loop parallel programs. In the figure, auto-
tuning is performance of task parallel programs optimized by
our autotuning framework, and static is performance obtained



by the static cut-off. omp and polly are those of simple loop
parallel programs optimized by OpenMP with GCC and by
Polly with Clang respectively. We also made omp optimized,
a hand-tuned OpenMP version optimized by changing block-
ing sizes, scheduling strategies, scheduling parameters (chunk
size, etc.), and collapse clauses for nested loops. The re-
sults of polly’s nbody and vecadd are omitted in the chart
because they were not parallelized. The autotuning version
(autotuning) is a baseline. Fig. 8 shows the performance of
autotuning was overall faster than static, omp and polly; the
geometric mean of static’s relative performance was 0.89x and
those of omp and polly were 0.63x and 0.65x. Furthermore,
autotuning was nearly comparable to omp optimized, which
boost performance to show that of 1.1x. It suggests that task
parallel programs carefully optimized by a compiler may reach
the performance of hand-optimized loop parallel programs
by utilizing advantages of divide-and-conquer features (e.g.,
recursive cache-blocking).

V. RELATEDWORK

A. Autotuning framework
Autotuning is a well-known approach to optimize param-

eters which cannot be determined analytically or by using
simple heuristics. ATLAS [15] and FFTW [16] are the most
famous autotuning software to highly optimize specific pro-
grams. PetaBricks proposed by Ansel et al. [10] is a general
autotuning system containing an original language and its
compiler, which mainly focuses on tuning algorithmic choices
by utilizing divide-and-conquer features. The basic concept is
similar to ours, but PetaBricks requires programmers to write
multiple implementations of the algorithms in their original
language, while our goal is to achieve high performance with
simple task parallel programs basically written in C/C++.

B. Dynamic cut-off
A dynamic cut-off was firstly proposed by Duran et al. [9]

as an adaptive cut-off; the runtime calls a function instead of
creating tasks if the runtime information such as depth of the
task and the number of ready tasks tells there exist sufficiently
many tasks. The state-of-the-art dynamic cut-off algorithm
proposed by Thoman et al. [5] is a multiversioning method
which creates multiple versions including inlined versions and
fully serialized one, and switches between them based on the
runtime information. Though these runtime-based approaches
are in general applicable to a wider range of tasks, they
reveal little opportunity for applying aggressive optimizations
including autotuning. Combining autotuning and the dynamic
approach is our future work.

VI. CONCLUSION

This paper describes an autotuning framework to optimize
divide-and-conquer task parallel programs, which combines
multiple transformation techniques based on a divide-and-
conquer feature. The evaluation shows significant speedup by
our proposed framework whose performance is better than that
of the dynamic cut-off and comparable to that of manually-
optimized loop parallel programs.
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